

06 ГАЗЫ

06.01 Поверочные газовые смеси – стандартные образцы состава

Применяются для градуировки, калибровки, поверки газоаналитических приборов и систем, для аттестации методик выполнения измерений содержания компонентов газовых сред, для контроля точности результатов измерений, выполняемых с помощью анализаторов универсального назначения (газовых хроматографов, масс-спектрометров и других).

Приготавливаются путем смешения чистых газов в заданных соотношениях.

В зависимости от уровня точности поверочные газовые смеси (ПГС) подразделяются на три разряда: нулевой, первый и второй.

Выпускаются по ТУ 6-16-2956-92.

Код по ОКП 21 1495.

Поставляются и хранятся в баллонах.

Вид баллона	Вместимость баллона, дм ³	Давление смеси, МПа	Примечание
Баллоны из углеродистой или леги-			
рованной стали	2-12	6,9-10	1, 2
Специальные баллоны (из нержа-			
веющей стали, алюминия, с обрабо-			
танной внутренней поверхностью)	1-10	6,9-10	2
Баллоны аэрозольные	0,45-1,0	0,8-1,0	3, 4

Примечание: 1. Кроме ПГС, включающих сероводород и диоксид азота.

- 2. Давление смесей с легко конденсируемыми компонентами снижено на 3-5 МПа.
- 3. Кроме ПГС, включающих оксид и диоксид азота, диоксид серы, аммиак, гексан.
- 4. Кроме ПГС нулевого разряда.

В соответствии с Государственной поверочной схемой для средств измерений содержания компонентов в газовых средах (ГОСТ 8.578-2002) ПГС выполняют функции рабочих эталонов 0-го, 1-го и 2-го разрядов.

В комплект поставки входит паспорт, содержание которого соответствует ИСО 6141-2000. Гарантийные сроки годности 1-2 года.

Метрологические характеристики поверочных газовых смесей представлены в таблицах на стр. 29-62.

Пояснения к таблицам:

- 1) Состав ПГС 2-го и 1-го разряда выражается в единицах объемной доли компонента, ПГС нулевого разряда в единицах молярной доли компонента.
- 2) Заказываемые значения объемной (молярной) доли компонента должны находится в интервале номинальных значений, установленных для ПГС с выбранным регистрационным номером. Компоненты помеченные «*» включаются в смесь по специальному заказу.
- 3) Пределы допускаемого отклонения от заказываемых значений (Д) представлены в абсолютной форме или в относительной форме, в последнем случае они помечаются "%, отн.".
- 4) Пределы допускаемой погрешности (Δ) представляются в абсолютной форме числом или формулой Δ = a·X + b, где X обозначает действительное (указываемое в паспорте) значение объемной (молярной) доли определяемого компонента, или в относительной форме, в последнем случае они помечаются "%, отн.".
- 5) Содержание фонового компонента (газ разбавитель) выражается как остальное (сокращенно ост.). В скобках указываются другие возможные фоновые компоненты.

Служба эталонных материалов ФГУП "ВНИИМ им. Д.И. Менделеева"

190005, Санкт-Петербург, Московский пр., 19 5-11-45 E-mail:info@vniim.ru

Регистрационный номер Компонентный состав Объемной (колярной) доли долускаемого отклюненты ±Д долускаемого отклюненты ±Д </th <th></th> <th></th> <th>Номинальн</th> <th>ые значения</th> <th>Пределы</th> <th>Пределы</th> <th>_</th>			Номинальн	ые значения	Пределы	Пределы	_
Mail (ppm) #3/1 #3/4 #	Регистрационный	Компонентный				<u> </u>	ДВ
Main (ppm)	•		*	• /	-	-	азр
0.01001 (TCO 3710-87)	P					1	Ь
0.00.1002 (TCO 3711-87) O2+N2 O.904 O.006 O.004 1 0.001003 (TCO 3712-87) O2+N2 O.100 O.010 O.0010 O.006 1 0.001004 (TCO 3713-87) O2+N2 O.190 O.010 O.0010 O.006 1 0.001005 (TCO 3714-87) O2+N2 O.250 O.025 O.025 O.002 1 0.001006 (TCO 3714-87) O2+N2 O.250 O.025 O.020 1 0.001006 (TCO 3716-87) O2+N2 O2+N2 O.250 O.025 O.020 1 0.001006 (TCO 3716-87) O2+N2 O2+N2 O.950 O.05 O.02 2 0.001006 (TCO 3718-87) O2+N2 O2+N2 O.94 O.066 O.04 2 0.001009 (TCO 3718-87) O2+N2 O.94 O.95 O.05 O.02 1 0.001000 (TCO 3718-87) O2+N2 O.94 O.95 O.05 O.02 1 0.001010 (TCO 3718-87) O2+N2 O.94 O.95 O.05 O.02 1 0.001011 (TCO 3728-87) O2+N2 O.94 O.95 O.05 O.02 O.010 O.03 O	06.01.001 (ΓCO 3710-87)	O ₂ +N ₂	0,050	· (FF /		0,004	2
06.01.003 (TCO 3712-87) Oy+Ns Oy+Ns O,100 O,010 O,006 D,006 O,001 O,010 O,006 D,010 O,010 O,015 O,025 O,025 O,020 D,015 O,025 O,020 D,015 O,025 O,020 D,015 O,025 O,025 O,020 D,015 O,025 O,020 D,015 O,025 O,020 D,010 O,010 O,					0,006	0,004	
0.0.1005 CCO 3714-87)			0,100		0,010	0,006	2
06.01.006 ICO 3715-87 O ₂ +N ₂	06.01.004 (ΓCO 3713-87)	O ₂ +N ₂	0,190		0,010	0,006	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	06.01.005 (ΓCO 3714-87)	O_2+N_2	0,250		0,025	0,015	2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		O ₂ +N ₂	0,475		0,025	0,020	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		O ₂ +N ₂	0,50		0,05	0,02	
06.01.010 (TCO 3719-87) 02+N2 1.00 0.10 0.03 2 06.01.011 (TCO 3720-87) 02+N2 1.0-3,0 0.2 0.1 0.1 0.03 1 06.01.012 (TCO 3721-87) 02+N2 1.90 0.10 0.03 1 06.01.013 (TCO 3722-87) 02+N2 2.50-4.75 0.25 0.05 1 06.01.014 (TCO 3723-87) 02+N2 3.00-5,00 0.30 0.015 0 06.01.015 (TCO 3723-87) 02+N2 3.00-5,00 0.30 0.015 0 06.01.015 (TCO 3724-87) 02+N2 4.0-9,5 0.5 0.5 0.10 1 06.01.016 (TCO 3725-87) 02+N2 5.0-9,5 0.5 0.5 0.03 0 06.01.016 (TCO 3725-87) 02+N2 5.0-29,0 1.0 0.0 0.1 1 06.01.018 (TCO 3725-87) 02+N2 5.0-29,0 1.0 0.0 0.1 1 06.01.018 (TCO 3725-87) 02+N2 5.0-29,0 1.0 0.0 2 1 06.01.019 (TCO 3726-87) 02+N2 10.0-94,0 1.0 0.2 1 06.01.019 (TCO 3729-87) 02+N2 10.0-94,0 2.0 0.04 0 0 0 0 0 0 0 0 0	06.01.008 (ΓCO 3717-87)	O_2+N_2	0,94		0,06	0,04	2
06.01.011 (TCO 3720-87)					0,05	0,02	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$,			/	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$, ,			,	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					/		1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$,	,	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$, ,		/	/	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	06.01.015 (ΓCO 3724-87)						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$, ,				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						-)	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						/	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$,	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$,	,	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						/	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$,	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$,	/	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						/	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$, ,		,	,	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$,		,		1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$, ,		,	-)	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$,	,	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			2,0-3,3	15-35			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		CO ₂ +N ₂		-			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					10	8	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				200-410			2
06.01.043 (ΓCO 3752-87) CO2+N2 0,050-0,080 0,005 0,004 2 06.01.044 (ΓCO 3753-87) CO2+N2 0,095 0,005 0,004 1				430-475			
$06.01.044 \text{ (}\Gamma\text{CO }3753-87\text{)} CO_2+N_2 0,095 0,005 0,004 1$	06.01.043 (ΓCO 3752-87)	CO ₂ +N ₂	0,050-0,080		0,005	0,004	2
		CO ₂ +N ₂	0,095		0,005	0,004	1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	06.01.045 (ΓCO 3754-87)	CO ₂ +N ₂	0,100-0,165		0,010	0,008	2
06.01.046 (Γ CO 3755-87) CO ₂ +N ₂ 0,190 0,010 0,008 1	06.01.046 (ΓCO 3755-87)	CO_2+N_2	0,190		0,010		1
06.01.047 (ΓCO 3756-87) CO ₂ +N ₂ 0,150-0,400 0,025 0,020 2		CO_2+N_2	0,150-0,400		0,025		2
					/	- ,	0
					/	,	0
						- ,	0
06.01.051 (ΓCO 3760-87) CO ₂ +N ₂ 0,25-0,95 0,050 0,008 1					/	/	<u> </u>
06.01.052 (ΓCO 3761-87) CO ₂ +N ₂ 0,430-0,475 0,025 0,020 1					,		+
						/	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	06.01.054 (ΓCO 3763-87)	CO_2+N_2	0,70-1,90		0,10	0,016	1 1

Регистрационный	Компонентный	объемной (мо	ые значения олярной) доли	Пределы допускаемого	Пределы допускаемой	Разряд
номер	состав	определяемог	о компонента млн ⁻¹ (ppm)	отклонения ±Д	погрешности $\pm \Delta$	Pa
06.01.055 (ΓCO 3764-87)	CO ₂ +N ₂	0,80-1,90	млн (ррш)	0,10	0.02	1
06.01.056 (ΓCO 3765-87)	CO ₂ +N ₂	0,50-0,90		0.10	0.04	2
06.01.057 (ΓCO 3766-87)	CO ₂ +N ₂	1,50-2,85		0,15	0,04	1
06.01.058 (ΓCO 3767-87)	CO ₂ +N ₂	1,20-1,90		0,10	0,006	0
06.01.059 (ΓCO 3768-87)	CO ₂ +N ₂	1,50-2,80		0,20	0,08	2
06.01.060 (ΓCO 3769-87)	CO ₂ +N ₂	1,50-4,75		0,25	0,04	1
06.01.061 (ΓCO 3770-87)	CO_2+N_2	2,00-2,30		0,15	0,008	0
06.01.062 (ΓCO 3771-87)	CO_2+N_2	2,50-3,60		0,20	0,012	0
06.01.063 (ΓCO 3772-87)	CO ₂ +N ₂	4,00-5,00		0,25	0,016	0
06.01.064 (ΓCO 3773-87)	CO ₂ +N ₂	3,0-9,5		0,5	0,08	1
06.01.065 (ΓCO 3774-87)	CO ₂ +N ₂	4,0-9,5		0,5	0,1	1
06.01.066 (ΓCO 3775-87)	CO ₂ +N ₂	6,0-9,5		0,4	0,03	0
06.01.067 (ΓCO 3776-87)	CO_2+N_2	6,0-19,0		1,0	0,16	1
06.01.068 (ΓCO 3777-87)	CO_2+N_2	5,0-19,0		1,0	0,1	1
06.01.069 (ΓCO 3778-87)	CO_2+N_2	10,0-19,0		1,0	0,04	0
06.01.070 (ΓCO 3779-87)	CO_2+N_2	9,0-28,5		1,5	0,2	1
06.01.071 (ΓCO 3780-87)	CO_2+N_2	20,0-28,5		1,5	0,1	1
06.01.072 (ΓCO 3781-87)	CO ₂ +N ₂	30,0-47,5		2,5	0,1	1
06.01.073 (ΓCO 3782-87)	CO ₂ +N ₂	20,0-28,5		1,5	0,06	0
06.01.074 (ΓCO 3783-87)	CO ₂ +N ₂	25,0-47,5		2,5	0,4	2
06.01.075 (ΓCO 3784-87)	CO ₂ +N ₂	50,0-80,0		3,0	0,1	1
06.01.076 (ΓCO 3785-87)	CO_2+N_2	50,0-80,0		3,0	0,4	2
06.01.077 (ΓCO 3786-87)	CO_2+N_2	74,0-90,0		1,5	0,2	1
06.01.078 (ΓCO 3787-87)	CO_2+N_2	90,0-95,0		0,5	0,1	1
06.01.079 (ΓCO 3788-87)	CO ₂ +N ₂	0,50		0,05	0,016	2
06.01.080 (ΓCO 3789-87)	CO ₂ +N ₂	1,8-3,0		0,2	0,04	1
06.01.081 (ΓCO 3790-87)	CO ₂ +N ₂	20,0-38,0		2,0	0,3	1
06.01.082 (ΓCO 3791-87)	СО2+воздух	0,80-1,80		0,10	0,03	1
06.01.083 (ΓCO 3792-87)	СО2+воздух	0,25-1,50		0,10	0,04	2
06.01.084 (ΓCO 3793-87)	СО ₂ +воздух	1,0-3,0		0,2	0,1	2
06.01.085 (ΓCO 3794-87)	СО2+воздух	1,8-3,0		0,2	0,04	1
06.01.086 (ΓCO 3795-87)	СО ₂ +воздух	4,0-12,0	200	0,5	0,1 10	1
06.01.087 (ΓCO 3796-87)	CO ₂ +He		200 500	50		2
06.01.088 (ΓCO 3797-87) 06.01.089 (ΓCO 3798-87)	CO ₂ +He		13,0-17,0	50 2,0	15 1.0	2
06.01.089 (ΓCO 3798-87) 06.01.090 (ΓCO 3799-87)	CO+N ₂ CO+N ₂		10-35	4	2	2
06.01.090 (ΓCO 3800-87)	CO+N ₂		24-32	2	1	1
06.01.091 (ΓCO 3800-87) 06.01.092 (ΓCO 3801-87)	CO+N ₂		17-32	3	1,5	2
06.01.093 (ΓCO 3802-87)	CO+N ₂		34-65	4	1,5	1
06.01.094 (ΓCO 3803-87)	CO+N ₂		45	5	2	1
06.01.095 (ΓCO 3804-87)	CO+N ₂		50-92	8	4	1
06.01.096 (ΓCO 3805-87)	CO+N ₂		43-77	9	4	2
06.01.097 (ΓCO 3806-87)	CO+N ₂		100-190	10	4	1
06.01.098 (ΓCO 3807-87)	CO+N ₂		170-215	20	12	2
06.01.099 (ΓCO 3808-87)	CO+N ₂		250-475	25	10	1
06.01.100 (ΓCO 3809-87)	CO+N ₂		280-325	20	12	1
06.01.100 (ΓCO 3810-87)	CO+N ₂	0,050-0,095	200 323	0,005	0.002	1
06.01.102 (ΓCO 3811-87)	CO+N ₂	0,100-0,190		0,010	0,004	1
06.01.102 (ΓCO 3812-87)	CO+N ₂	0,230-0,300		0,020	0,0025	0
06.01.104 (ΓCO 3813-87)	CO+N ₂	0,350-0,475		0,025	0,003	0
06.01.105 (ΓCO 3814-87)	CO+N ₂	0,250-0,475		0,025	0,010	1
06.01.106 (ΓCO 3815-87)	CO+N ₂	0,50-1,00		0,05	0.003	0
06.01.107 (ΓCO 3816-87)	CO+N ₂	0,30-0,95		0,05	0,008	1
06.01.108 (ΓCO 3817-87)	CO+N ₂	0,50		0,05	0,016	2
06.01.109 (ΓCO 3818-87)	CO+N ₂	1,00-1,50		0,10	0,005	0
06.01.110 (ΓCO 3819-87)	CO+N ₂	0,70-1,90		0,10	0,016	1
(= 00 001) 01)	2	-,,	I.	-,	-,	<u> </u>

190005, Санкт-Петербург, Московский пр., 19

Регистрационный	Компонентный		ые значения элярной) доли	Пределы допускаемого	Пределы допускаемой	ц
номер	состав		олярнои) доли о компонента	отклонения	погрешности	Разряд
номер	COCTAB	%	млн ⁻¹ (ppm)	±Д	±Δ	P
06.01.111 (ΓCO 3820-87)	CO+N ₂	0,60-1,00	.,ш. (рр.н.)	0,10	0,03	2
06.01.112 (ΓCO 3821-87)	CO+N ₂	1,40-1,96		0,10	0,03	1
06.01.113 (ΓCO 3822-87)	CO+N ₂	1,20-1,90		0,10	0,006	0
06.01.114 (ΓCO 3823-87)	CO+N ₂	1,25		0,10	0,04	2
06.01.115 (ΓCO 3824-87)	CO+N ₂	1,50-2,85		0,15	0,04	1
06.01.116 (ΓCO 3825-87)	CO+N ₂	2,00-2,85		0,15	0,008	0
06.01.117 (ΓCO 3826-87)	CO+N ₂	1,50-2,50		0,25	0,08	2
06.01.118 (ΓCO 3827-87)	CO+N ₂	1,50-4,75		0,25	0,04	1
06.01.119 (ΓCO 3828-87)	CO+N ₂	3,00-4,75		0,25	0,08	1
06.01.120 (ΓCO 3829-87)	CO+N ₂	3,00-5,00		0,25	0,015	0
06.01.121 (ΓCO 3830-87)	CO+N ₂	6,0-9,5		0,5	0,03	0
06.01.122 (ΓCO 3831-87)	CO+N ₂	3,0-9,5		0,5	0,08	1
06.01.123 (ΓCO 3832-87)	CO+N ₂	5,0-9,5		0,5	0,1	1
06.01.124 (ΓCO 3833-87) 06.01.125 (ΓCO 3834-87)	CO+N ₂ CO+N ₂	10,0-19,0		1,0	0,04	0
06.01.125 (ΓCO 3835-87)	CO+N ₂	6,0-19,0 8,0-28,5		1,0 1,5	0,16 0,2	1
06.01.120 (ΓCO 3836-87) 06.01.127 (ΓCO 3836-87)	CO+N ₂	20,0-28,5		1,5	0,05	0
06.01.127 (ΓCO 3830-87) 06.01.128 (ΓCO 3837-87)	CO+N ₂	30-70		2	0,05	0
06.01.129 (ΓCO 3838-87)	CO+N ₂	20-70		2	0,1	1
06.01.129 (ΓCO 3839-87)	CO+N ₂	15,0-47,5		2,5	0,4	2
06.01.131 (ΓCO 3840-87)	CO+N ₂	20-67		3	0,5	2
06.01.132 (ΓCO 3841-87)	СО+воздух		10	2	1	2
06.01.133 (ΓCO 3842-87)	СО+воздух		10-35	4	2	2
06.01.134 (ΓCO 3843-87)	СО+воздух		17-32	2	0,7	1
06.01.135 (ΓCO 3844-87)	СО+воздух		34-65	4	1,5	1
06.01.136 (ΓCO 3845-87)	СО+воздух		45	5	2	1
06.01.137 (ΓCO 3846-87)	СО+воздух		50	5	3	2
06.01.138 (ΓCO 3847-87)	СО+воздух		69-130	7	3	1
06.01.139 (ΓCO 3848-87)	СО+воздух		100	10	4	1
06.01.140 (ΓCO 3849-87)	СО+воздух		200	20	10	2
06.01.141 (ΓCO 3850-87)	СО+воздух		250-470	30	10	1
06.01.142 (ΓCO 3851-87)	СО+воздух		430	35	17	2
06.01.143 (ΓCO 3852-87)	СО+воздух	0.050	815	40	20	1
06.01.144 (ΓCO 3853-87) 06.01.145 (ΓCO 3854-87)	СО+воздух СО+воздух	0,050 0,050-0,100		0,005 0,010	0,003 0,005	2
06.01.145 (ΓCO 3855-87) 06.01.146 (ΓCO 3855-87)	СО+воздух	0,130		0,010	0,003	2
06.01.147 (ΓCO 3856-87)	СО+воздух	0,130		0,013	0,008	1
06.01.147 (ΓCO 3857-87)	CH ₄ +N ₂	0,23-0,47	25-45	5	3	2
06.01.149 (ΓCO 3858-87)	CH ₄ +N ₂		50-92	8	5	2
06.01.150 (ΓCO 3859-87)	CH ₄ +N ₂		100-190	10	4	1
06.01.151 (ΓCO 3860-87)	CH ₄ +N ₂		185	15	8	1
06.01.152 (ΓCO 3861-87)	CH ₄ +N ₂		250	30	20	2
06.01.153 (ΓCO 3862-87)	CH ₄ +N ₂		250-475	25	10	1
06.01.154 (ΓCO 3863-87)	CH ₄ +N ₂		465	35	20	1
06.01.155 (ΓCO 3864-87)	CH ₄ +N ₂	0,050		0,008	0,004	2
06.01.156 (ΓCO 3865-87)	CH ₄ +N ₂	0,050-0,095		0,005	0,002	1
06.01.157 (ΓCO 3866-87)	CH ₄ +N ₂	0,092		0,008	0,004	1
06.01.158 (ΓCO 3867-87)	CH ₄ +N ₂	0,100-0,140		0,010	0,001	0
06.01.159 (ΓCO 3868-87)	CH ₄ +N ₂	0,100-0,190		0,010	0,004	1
06.01.160 (ΓCO 3869-87)	CH ₄ +N ₂	0,150-0,190		0,010	0,0015	0
06.01.161 (ΓCO 3870-87)	CH ₄ +N ₂	0,230-0,300		0,020	0,0025	0
06.01.162 (ΓCO 3871-87)	CH ₄ +N ₂	0,350-0,475		0,025	0,003	0
06.01.163 (ΓCO 3872-87)	CH ₄ +N ₂	0,250-0,475		0,025 0,05	0,010 0,003	0
<u>06.01.164</u> (ΓCO 3873-87)	CH ₄ +N ₂	0,50-1,00		0,03	0,003	U

	TC v		ые значения	Пределы	Пределы	д
Регистрационный	Компонентный		олярной) доли	допускаемого	допускаемой	Разряд
номер	состав		го компонента	отклонения	погрешности	Pa
06.01.165 (EGO.2074.07)	CII IN	%	млн ⁻¹ (ppm)	±Д	±Δ	1
06.01.165 (ΓCO 3874-87)	CH ₄ +N ₂	0,30-0,95		0,05	0,008	1
06.01.166 (ΓCO 3875-87)	CH ₄ +N ₂	0,50-0,75		0,05	0,02	2
06.01.167 (ΓCO 3876-87)	CH ₄ +N ₂	1,20-1,90		0,10	0,006	0
06.01.168 (ΓCO 3877-87)	CH ₄ +N ₂	0,70-1,90		0,10	0,016	1
06.01.169 (ΓCO 3878-87)	CH ₄ +N ₂	0,90-1,90		0,10 0,15	0,02	1
06.01.170 (ΓCO 3879-87) 06.01.171 (ΓCO 3880-87)	CH ₄ +N ₂ CH ₄ +N ₂	2,00-2,30 2,00-3,50		0,13	0,008 0,10	2
06.01.171 (ΓCO 3880-87) 06.01.172 (ΓCO 3881-87)	CH_4+N_2 CH_4+N_2	2,50-3,60		0,23	0,10	0
06.01.172 (ΓCO 3881-87) 06.01.173 (ΓCO 3882-87)	CH_4+N_2 CH_4+N_2	4,00-5,00		0,25	0,012	0
06.01.174 (ΓCO 3883-87)	CH_4+N_2 CH_4+N_2	1,50-4,75		0,25	0,016	1
06.01.174 (ΓCO 3883-87) 06.01.175 (ΓCO 3884-87)	CH_4+N_2 CH_4+N_2	6,0-9,5		0,23	0,03	0
06.01.176 (ΓCO 3885-87)	CH_4+N_2 CH_4+N_2	3,0-9,5		0,5	0,08	1
06.01.176 (ΓCO 3886-87)	CH ₄ +N ₂ CH ₄ +N ₂	4,0-7,0		0,5	0,08	2
06.01.177 (ΓCO 3887-87)	CH ₄ +N ₂	10,0-19,0		1,0	0,04	0
06.01.178 (ΓCO 3888-87)	CH ₄ +N ₂	6,0-19,0		1,0	0,16	1
06.01.179 (ΓCO 3889-87)	CH ₄ +N ₂	8,0-19,0		1,0	0,20	1
06.01.180 (ΓCO 3890-87)	CH ₄ +N ₂	9,0-28,5		1,5	0,2	1
06.01.182 (ΓCO 3891-87)	CH ₄ +N ₂	20,0-28,5		1,5	0,05	0
06.01.183 (ΓCO 3892-87)	CH ₄ +N ₂	15,0-47,5		2,5	0,4	2
06.01.184 (ΓCO 3893-87)	CH ₄ +N ₂	20-67		3	0,5	2
06.01.185 (ΓCO 3894-87)	CH ₄ +N ₂	28-92		3	0,8	2
06.01.186 (ΓCO 3895-87)	CH ₄ +N ₂	30-70		3	0,06	0
06.01.187 (ΓCO 3896-87)	СН ₄ +воздух		2,5-7,5	1,0	0,5	2
06.01.188 (ΓCO 3897-87)	СН4+воздух		9,0	1,0	0,7	2
06.01.189 (ΓCO 3898-87)	СН ₄ +воздух		10,5-15,0	1,5	0,6	1
06.01.190 (ΓCO 3899-87)	СН ₄ +воздух		18,0	2,0	0,7	1
06.01.191 (ΓCO 3900-87)	СН ₄ +воздух		21,0-30,0	3,0	1,5	2
06.01.192 (ΓCO 3901-87)	СН ₄ +воздух		36,0-45,0	4,0	1,5	1
06.01.193 (ΓCO 3902-87)	СН4+воздух		48-75	8	4	2
06.01.194 (ΓCO 3903-87) 06.01.195 (ΓCO 3904-87)	СИ - воздух	0.20, 0.70	90-120	10 0,04	6 0,02	2
06.01.195 (ΓCO 3904-87) 06.01.196 (ΓCO 3905-87)	СИ - воздух	0,20-0,70 0,30-1,40		0,04	0,02	2
06.01.196 (ΓCO 3905-87) 06.01.197 (ΓCO 3906-87)	СН ₄ +воздух СН ₄ +воздух	1,50-2,50		0,06	0,04	1
06.01.197 (ΓCO 3900-87) 06.01.198 (ΓCO 3907-87)	СН4+воздух	0,80-2,50		0,00	0,08	2
06.01.198 (ΓCO 3908-87)	H ₂ +N ₂	0,30-0,70		0,05	0,003	0
06.01.200 (ΓCO 3909-87)	H ₂ +N ₂	0,50-0,95		0,05	0,03	2
06.01.201 (ΓCO 3910-87)	H ₂ +N ₂	0,60-1,00		0,10	0,03	2
06.01.202 (ΓCO 3911-87)	H ₂ +N ₂	0,90-1,40		0,10	0,004	0
06.01.203 (ΓCO 3912-87)	H ₂ +N ₂	1,20-1,90		0,10	0,03	1
06.01.204 (ΓCO 3913-87)	H ₂ +N ₂	1,20-2,85		0,15	0,03	1
06.01.205 (ΓCO 3914-87)	H ₂ +N ₂	1,4-3,9		0,3	0,03	1
06.01.206 (ΓCO 3915-87)	H ₂ +N ₂	1,50-4,00		0,20	0,04	1
06.01.207 (ΓCO 3916-87)	H_2+N_2	1,80-2,40		0,20	0,007	0
06.01.208 (ΓCO 3917-87)	H_2+N_2	2,50-4,75		0,25	0,04	1
06.01.209 (ΓCO 3918-87)	H ₂ +N ₂	2,50-6,50		0,30	0,05	1
06.01.210 (ΓCO 3919-87)	H ₂ +N ₂	3,0-5,5		0,5	0,04	1
06.01.211 (ΓCO 3920-87)	H ₂ +N ₂	3,0-3,6		0,2	0,012	0
06.01.212 (ΓCO 3921-87)	H ₂ +N ₂	3,5-9,5		0,5	0,08	1
06.01.213 (ΓCO 3922-87)	H ₂ +N ₂	2,30-3,90		0,05	0,04	1
06.01.214 (ΓCO 3923-87)	H ₂ +N ₂	4,0-5,0 4,10-5,70		0,3	0,015 0,04	0
06.01.215 (ΓCO 3924-87) 06.01.216 (ΓCO 3925-87)	H ₂ +N ₂ H ₂ +N ₂	4,10-5,70 5,1		0,15 0,20	0,04	1
06.01.217 (ΓCO 3926-87)	H_2+N_2	6,0-7,0		0,4	0,03	0
06.01.217 (ΓCO 3920-87) 06.01.218 (ΓCO 3927-87)	H_2+N_2	8,0-9,5		0,4	0,02	0
06.01.219 (ΓCO 3928-87)	H_2+N_2	10,0-24,0		1,0	0.04	0
06.01.220 (ΓCO 3929-87)	H ₂ +N ₂	10,0-19,0		1,0	0,1	1
(= 00 0,2, 01)	-22	,,-	I	-,~	-,-	

190005, Санкт-Петербург, Московский пр., 19

	_	Номичен и		Продолу	Продолу	
Р аги <i>с</i> тронноми т	Компонентный		ые значения элярной) доли	Пределы	Пределы	II.
Регистрационный				допускаемого отклонения	допускаемой	Разряд
номер	состав	определяемог %	о компонента млн ⁻¹ (ppm)	- ' ' ' _'	погрешности $\pm \Delta$	Ра
06.01.221 (ΓCO 3930-87)	H_2+N_2	10,0-24,0	млн ⁻¹ (ppm)	±Д 1,0	0,2	1
06.01.222 (ΓCO 3931-87)	H_2+N_2	10,0-24,0		2,0	0,5	2
06.01.223 (ΓCO 3931-87) 06.01.223 (ΓCO 3932-87)	H_2+N_2	18,0		1,0	0,3	2
06.01.224 (ΓCO 3933-87)	H_2+N_2	20-80		2	0,3	1
06.01.224 (ΓCO 3933-87) 06.01.225 (ΓCO 3934-87)	H_2+N_2	25-80		2,00	0,3	0
06.01.226 (ΓCO 3935-87)	H_2+N_2	52-78		2,00	0,04	1
06.01.220 (ΓCO 3936-87) 06.01.227 (ΓCO 3936-87)	H_2+N_2	58,0-75,0		1,0	0,2	1
06.01.227 (ΓCO 3930-87) 06.01.228 (ΓCO 3937-87)	H_2+N_2 H_2+N_2	80,0		1,0	0,2	2
06.01.228 (ΓCO 3937-87) 06.01.229 (ΓCO 3938-87)	H_2+N_2 H_2+N_2	81-94		1,0	0,4	0
06.01.230 (ΓCO 3939-87)	H_2+N_2	81,0-90,0		1,0	0,04	1
06.01.230 (ΓCO 3939-87) 06.01.231 (ΓCO 3940-87)	H_2+N_2 H_2+N_2	90,5-95,0		0,5	0,2	1
06.01.231 (ΓCO 3940-87) 06.01.232 (ΓCO 3941-87)		95,25-97,50		0,3	0.04	1
06.01.232 (ΓCO 3941-87) 06.01.233 (ΓCO 3942-87)	H_2+N_2	97,0-99,0		0,23	0,04	1
	H ₂ +N ₂					
06.01.234 (ΓCO 3943-87)	H ₂ +N ₂	0,50		0,05	0,02	2
06.01.235 (ΓCO 3944-87)	H ₂ +N ₂	0,95		0,05	0,02	1
06.01.236 (ΓCO 3945-87)	Н ₂ +воздух	0,20-0,60		0,04	0,03	2
06.01.237 (ΓCO 3946-87)	Н ₂ +воздух	0,27		0,02	0,02	2
06.01.238 (ΓCO 3947-87)	Н ₂ +воздух	0,50-1,00		0,05	0,03	2
06.01.239 (ΓCO 3948-87)	Н2+воздух	0,70		0,08	0,05	2
06.01.240 (ΓCO 3949-87)	Н2+воздух	1,06		0,04	0,03	2
06.01.241 (ΓCO 3950-87)	Н2+воздух	1,10-2,00		0,10	0,03	1
06.01.242 (ΓCO 3951-87)	Н2+воздух	1,10-2,00		0,10	0,06	2
06.01.243 (ΓCO 3952-87)	O ₂ +Ar	1,0-3,5		0,3	0,1	2
06.01.244 (ΓCO 3953-87)	O ₂ +Ar	2,0-7,0		0,4	0,2	2
06.01.245 (ΓCO 3954-87)	H ₂ +Ar	1,0		0,1	0,005	0
06.01.246 (ΓCO 3955-87)	H ₂ +Ar	1,50-2,85		0,15	0,03	1
06.01.247 (ΓCO 3956-87)	H ₂ +Ar	2,0-3,0		0,2	0,01	0
06.01.248 (ΓCO 3957-87)	H ₂ +Ar	2,5		0,5	0,08	2
06.01.249 (ΓCO 3958-87)	H ₂ +Ar	2,5-5,0		0,3	0,05	1
06.01.250 (ΓCO 3959-87)	H ₂ +Ar	3,0-4,5		0,5	0,08	1
06.01.251 (ΓCO 3960-87)	H ₂ +Ar	4,0-5,0		0,3	0,02	0
06.01.252 (ΓCO 3961-87)	$C_3H_8+N_2$	0,20		0,05	0,02	2
06.01.253 (ΓCO 3962-87)	$C_3H_8+N_2$	0,50		0,10	0,05	2
06.01.254 (ΓCO 3963-87)	$C_3H_8+N_2$	1,00		0,20	0,10	2
06.01.255 (ΓCO 3964-87)	$C_3H_8+N_2$	1,30-1,50		0,30	0,15	2
06.01.256 (ΓCO 3965-87)	$C_3H_8+N_2$	1,7-2,0		0,3	0,2	2
06.01.257 (ΓCO 3966-87)	$C_3H_8+N_2$	3,0		0,5	0,3	2
06.01.258 (ΓCO 3967-87)	$C_3H_8+N_2$	5,0		0,5	0,5	2
06.01.259 (ΓCO 3968-87)	С ₃ Н ₈ +воздух	0,18-0,40		0,03	0,02	2
06.01.260 (ΓCO 3969-87)	С ₃ Н ₈ +воздух	0,40-0,60		0,03	0,03	2
06.01.261 (ΓCO 3970-87)	С ₃ Н ₈ +воздух	0,80-1,00		0,05	0,03	2
06.01.262 (ΓCO 3971-87)	C ₃ H ₈ +He	0,12		0,05	0,01	2
06.01.263 (ΓCO 3972-87)	C ₃ H ₈ +He	0,50		0,10	0,05	2
06.01.264 (ΓCO 3973-87)	C ₃ H ₈ +He	1,00		0,20	0,10	2
06.01.265 (ΓCO 3974-87)	C ₃ H ₈ +He	1,30-1,50		0,30	0,15	2
06.01.266 (ΓCO 3975-87)	C ₃ H ₈ +He	1,7-2,0		0,3	0,2	2
06.01.267 (ΓCO 3976-87)	C ₃ H ₈ +He	2,5		0,5	0,3	2
06.01.268 (ΓCO 3977-87)	C ₃ H ₈ +He	5,0		0,5	0,5	2
06.01.269 (ΓCO 3978-87)	He+N ₂	0,5-1,2		0,2	0,04	2
06.01.270 (ΓCO 3979-87)	He+N ₂	1,5-4,5		0,3	0,04	1
06.01.271 (ΓCO 3980-87)	He+N ₂	4,0-5,5		0,3	0,02	0
06.01.272 (ΓCO 3981-87)	He+N ₂	5,0-9,5		0,5	0,10	1
06.01.273 (ΓCO 3982-87)	He+N ₂	8,0-19,0		1,0	0,04	0
06.01.274 (ΓCO 3983-87)	He+N ₂	10,0-19,0		1,0	0,2	1
	- 2	2 3*		. , , ,	,	

Регистрационный номер Компонентный состав Номинальные значения объемной (молярной) доли определяемого компонента Пределы допускаемого допускаемого отклонения погрешности ±Д Допускаемого отклонения погрешности ±Д ±Δ 06.01.275 (ГСО 3984-87) Не+N₂ 20,0-90,0 2,0 0,04 06.01.276 (ГСО 3985-87) Не+N₂ 20,0-80,0 2,0 0,2 06.01.277 (ГСО 3986-87) Не+N₂ 81,0-94,0 1,0 0,2 06.01.278 (ГСО 3987-87) Не+воздух 2,50-4,75 0,25 0,06 06.01.279 (ГСО 3988-87) Не+воздух 5,0-9,5 0,5 0,08 06.01.280 (ГСО 3999-87) Не+воздух 90,50-95,00 0,50 0,08 06.01.281 (ГСО 3990-87) Не+воздух 95,25-97,50 0,25 0,06 06.01.282 (ГСО 3991-87) N₂+Ar 2,0 0,6 0,4 06.01.283 (ГСО 3992-87) N₂+Ar 5,0 1,5 1,0	-
номер состав определяемого компонента отклонения погрешности 06.01.275 (ГСО 3984-87) Не+N₂ 20,0-90,0 2,0 0,04 06.01.276 (ГСО 3985-87) Не+N₂ 20,0-80,0 2,0 0,2 06.01.277 (ГСО 3986-87) Не+N₂ 81,0-94,0 1,0 0,2 06.01.278 (ГСО 3987-87) Не+воздух 2,50-4,75 0,25 0,06 06.01.279 (ГСО 3988-87) Не+воздух 5,0-9,5 0,5 0,08 06.01.280 (ГСО 3989-87) Не+воздух 90,50-95,00 0,50 0,08 06.01.281 (ГСО 3990-87) Не+воздух 95,25-97,50 0,25 0,06 06.01.282 (ГСО 3991-87) N₂+Ar 2,0 0,6 0,4	. 🕏
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$, P
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0
06.01.277 (ГСО 3986-87) He+N2 81,0-94,0 1,0 0,2 06.01.278 (ГСО 3987-87) He+воздух 2,50-4,75 0,25 0,06 06.01.279 (ГСО 3988-87) He+воздух 5,0-9,5 0,5 0,08 06.01.280 (ГСО 3989-87) He+воздух 90,50-95,00 0,50 0,08 06.01.281 (ГСО 3990-87) He+воздух 95,25-97,50 0,25 0,06 06.01.282 (ГСО 3991-87) N ₂ +Ar 2,0 0,6 0,4	1
06.01.278 (ГСО 3987-87) Не+воздух 2,50-4,75 0,25 0,06 06.01.279 (ГСО 3988-87) Не+воздух 5,0-9,5 0,5 0,08 06.01.280 (ГСО 3989-87) Не+воздух 90,50-95,00 0,50 0,08 06.01.281 (ГСО 3990-87) Не+воздух 95,25-97,50 0,25 0,06 06.01.282 (ГСО 3991-87) N ₂ +Ar 2,0 0,6 0,4	1
06.01.279 (ΓCO 3988-87) He+воздух 5,0-9,5 0,5 0,08 06.01.280 (ΓCO 3989-87) He+воздух 90,50-95,00 0,50 0,08 06.01.281 (ΓCO 3990-87) He+воздух 95,25-97,50 0,25 0,06 06.01.282 (ΓCO 3991-87) N ₂ +Ar 2,0 0,6 0,4	1
06.01.280 (ГСО 3989-87) He+воздух 90,50-95,00 0,50 0,08 06.01.281 (ГСО 3990-87) He+воздух 95,25-97,50 0,25 0,06 06.01.282 (ГСО 3991-87) N2+Ar 2,0 0,6 0,4	1
06.01.282 (ΓCO 3991-87) N ₂ +Ar 2,0 0,6 0,4	1
06.01.282 (ΓCO 3991-87) N ₂ +Ar 2,0 0,6 0,4	1
$06.01.283 \text{ (FCO.3002.87)} \text{ N}_2 + \Delta r$ 5.0 1.5 1.0	2
00.01.203 (1 CO 3772-07) = 102+M1 = 0.00 = 0.00 = 1.3 = 1.0	2
06.01.284 (Γ CO 3993-87) N ₂ +Ar 7,5 2,0 1,5	2
06.01.285 (ΓCO 3994-87) N ₂ +Ar 10,0-15,0 2,5 1,5	2
06.01.286 (Γ CO 3995-87) N ₂ +Ar 20 4 2	2
$06.01.287$ (ΓCO 3996-87) N_2 +Ar 30 6 3	2
	2
<u>06.01.289 (ΓCO 3998-87) N₂+Ar 90 10 5</u>	2
06.01.290 (ΓCO 3999-87) N ₂ +Ar 200 25 15	2
$06.01.291$ (ΓCO 4000-87) N_2 +Ar $0,050$ $0,005$ $0,003$	2
06.01.292 (Γ CO 4001-87) N ₂ +Ar 0,070 0,008 0,004	2
<u>06.01.293 (ΓCO 4002-87) N₂+Ar 0,090 0,010 0,005</u>	2
06.01.294 (ΓCO 4003-87) Ar+N ₂ 4,0-6,0 0,5 0,02	0
06.01.295 (ΓCO 4004-87) Ar+N ₂ 3,0-7,0 0,6 0,2	2
06.01.296 (ΓCO 4005-87) Ar+N ₂ 8,0-19,0 1,0 0,2	1
06.01.297 (ΓCO 4006-87) Ar+N ₂ 8,0-19,0 1,0 0,04	0
06.01.298 (Γ CO 4007-87) Ar+N ₂ 15-50 2 0,4	2
06.01.299 (ΓCO 4008-87) Ar+N ₂ 60-95 2 0,4	2
06.01.300 (ΓCO 4009-87) Ar+N ₂ 20-94 2 0,04	0
06.01.301 (ΓCO 4010-87) Ar+N ₂ 82,0-97,5 0,8 0,2	1
06.01.302 (ΓCO 4011-87) Ar+N ₂ 95,0-97,5 0,5 0,03	0
06.01.303 (ΓCO 4012-87) NO+N ₂ 100-185 15 10	2
06.01.304 (ΓCO 4013-87) NO+N ₂ 240-560 40 20	2
06.01.305 (ΓCO 4014-87) NO+N ₂ 240 40 10	1
06.01.306 (ΓCO 4015-87) NO+N2 600-800 80 40	2
06.01.307 (ΓCO 4016-87) NO+N2 750 50 30	1
06.01.308 (ΓCO 4017-87) NO+N ₂ 900-1000 80 50	2
06.01.309 (ΓCO 4018-87) NO+N ₂ 0,110 0,012 0,005	1
06.01.310 (ΓCO 4019-87) NO+N ₂ 0,135 0,015 0,005	1
06.01.311 (ΓCO 4020-87) NO+N2 0,148 0,012 0,006	1
06.01.312 (ΓCO 4021-87) NO+N ₂ 0,180 0,020 0,008	1
06.01.313 (ΓCO 4022-87) NO+N ₂ 0,200-0,400 0,040 0,020	2
06.01.314 (CCO 4023-87) NO+N ₂ 0,324 0,036 0,015	1
06.01.315 (FCO 4024-87) NO+N ₂ 0,400 0,040 0,016	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2
111111111111111111111111111111111111111	2
1111 11 1 (11 1 1 1 1)	2
06.01.319 (ΓCO 4028-87) NO ₂ +N ₂ 160 25 7	1
06.01.320 (ΓCO 4029-87) NO ₂ +N ₂ 250 20 12	2
06.01.321 (ΓCO 4030-87) NO ₂ +N ₂ 0,10 0,02 0,008	2
06.01.322 (ΓCO 4031-87) NO ₂ +N ₂ 0,25 0,02 0,012	2
06.01.323 (FCO 4032-87) NO ₂ +N ₂ 0,47 0,03 0,024	2
06.01.324 (CCO 4033-87) SO ₂ +N ₂ 240 20 10	1
06.01.325 (CCO 4034-87) SO ₂ +N ₂ 370 40 15	1
06.01.326 (CCO 4035-87) SO ₂ +N ₂ 0,070 0,004 0,003	1
06.01.327 (FCO 4036-87) SO ₂ +N ₂ 0,092 0,010 0,004	1
06.01.328 (ΓCO 4037-87) SO ₂ +N ₂ 0,110 0,011 0,005	1
06.01.329 (FCO 4038-87) SO ₂ +N ₂ 0,175 0,010 0,008	1
06.01.330 (ΓCO 4039-87) SO ₂ +N ₂ 0,184 0,018 0,008	1

190005, Санкт-Петербург, Московский пр., 19

			ые значения	Пределы	Пределы	ц
Регистрационный	Компонентный		олярной) доли	допускаемого	допускаемой	кdя
номер	состав		о компонента	отклонения	погрешности	Разряд
		%	млн ⁻¹ (ppm)	±Д	$\pm\Delta$	
06.01.331 (ΓCO 4040-87)	SO ₂ +N ₂	0,210		0,011	0,009	1
06.01.332 (ΓCO 4041-87)	SO ₂ +N ₂	0,28		0,03	0,011	1
06.01.333 (ΓCO 4042-87)	SO ₂ +N ₂	0,30		0,03	0,02	2
06.01.334 (ΓCO 4043-87)	SO ₂ +N ₂	0,35		0,02	0,014	1
06.01.335 (ΓCO 4044-87)	SO_2+N_2	0,37		0,04	0,015	1
06.01.336 (ΓCO 4045-87)	SO_2+N_2	0,52		0,03	0,021	2
06.01.337 (ΓCO 4046-87)	SO_2+N_2	0,70		0,04	0,03	2
06.01.338 (ΓCO 4047-87)	SO ₂ +N ₂	0,75		0,08	0,03	2
06.01.339 (ΓCO 4048-87)	SO ₂ +N ₂	1,42		0,08	0,06	2
06.01.340 (ΓCO 4049-87)	SO_2+N_2	7,5		0,8	0,3	2
06.01.341 (ΓCO 4050-87)	SO ₂ +N ₂	14,2		0,8	0,6	2
06.01.342 (ΓCO 4051-87)	O_2	0,250		0,025	0,015	2
	\overrightarrow{CO}_2	5,0-15,0		1,0	0,1	
	N_2	ост.		-,*	-,-	
06.01.343 (ΓCO 4052-87)	O_2	0,475		0,025	0,020	1
00.01.5 .5 (1 00 1002 07)	CO_2	5,0-15,0		1,0	0,1	-
	N ₂	ост.		1,0	,,,	
06.01.344 (ΓCO 4053-87)	O_2	0,50-0,95		0,05	0,02	1
00.01.5 11 (1 00 1055 07)	CO_2	5,0-15,0		1,0	0,1	1
	N ₂	OCT.		1,0	0,1	
06.01.345 (ΓCO 4054-87)	O ₂	1,00-1,90		0,10	0,03	1
00.01.5 15 (1 00 105 1 07)	CO_2	5,0-15,0		1,0	0,1	1
	N ₂	ост.		1,0	0,1	
06.01.346 (ΓCO 4055-87)	O ₂	2,50-4,75		0,25	0,05	1
00.01.540 (1 00 4055-07)	CO_2	5,0-15,0		1,0	0,1	1
	N ₂	ост.		1,0	0,1	
06.01.347 (ΓCO 4056-87)	O ₂	5,00-9,50		0,50	0,10	1
00.01.547 (1 CO 4050-87)	CO_2	5,0-15,0		1,0	0,1	1
	N ₂	ост.		1,0	0,1	
06.01.348 (ΓCO 4057-87)	O_2	10,0-20,0		1,0	0,2	1
00.01.546 (1 00 4057-07)	CO_2	5,0-15,0		1,0	0,1	1
	N_2	OCT.		1,0	0,1	
06.01.349 (ΓCO 4058-87)	O_2	25,0-47,5		2,5	0,3	1
00.01.549 (1 CO 4058-87)	CO_2	5,0-15,0		1,0	0,3	1
	N_2	0CT.		1,0	0,2	
06.01.350 (ΓCO 4059-87)	O_2	40,0-76,0		4,0	0,4	2
00.01.330 (1 CO 4039-87)	CO_2	5,0-15,0		1,0	0,2	
	N_2	ост.		1,0	0,2	
06.01.351 (ΓCO 4060-87)	O_2	0,250		0,025	0,015	2
00.01.331 (1 CO 4000-87)	H_2	0,30-1,20		0,10	0,013	
	N ₂	ост.		0,10	0,03	
06.01.352 (ΓCO 4061-87)	O_2	0,475		0,025	0,020	1
00.01.332 (1 CO 4001-87)	H_2	0,30-1,20		0,10	0,020	1
	N ₂	OCT.		0,10	0,03	
06.01.353 (ΓCO 4062-87)	O_2	0,50-0,95		0,05	0,02	1
00.01.555 (1 00 4002-07)	H ₂	0,30-1,20		0,10	0,03	1
	N ₂	OCT.		0,10	0,03	
06.01.354 (ΓCO 4063-87)	O_2	1,00-1,90		0,10	0,03	1
00.01.334 (1 CO 4003-8/)	H_2	0,30-1,20		0,10	0,03	1
	N ₂			0,10	0,03	
06.01.355 (ΓCO 4064-87)	O_2	ост. 2,50-4,75		0,25	0,05	1
00.01.555 (1 CO 4004-8/)	H_2	0,30-1,20		0,23	0,03	1
				0,10	0,03	
06.01.356 (ΓCO 4065-87)	N ₂	ост. 5,0-9,5		0,5	0.1	1
00.01.550 (1 CO 4005-87)	$ \begin{array}{c} O_2 \\ H_2 \end{array} $	5,0-9,5 0,30-1,20			0,1 0,03	1
				0,10	0,03	
	N_2	OCT.	I		I	

Регистрационный	Компонентный		ые значения олярной) доли	Пределы допускаемого	Пределы допускаемой	Разряд
номер	состав		го компонента	отклонения	погрешности	de
номер	Состав	%	млн ⁻¹ (ppm)	±Д	погрешности ±∆	$P_{\tilde{c}}$
06.01.357 (ΓCO 4066-87)	O_2	10,0-20,0	млн (ррш)	1,0	0,2	1
00.01.337 (1 CO 4000-87)	H_2	0,30-1,20		0,10	0,03	1
	N_2			0,10	0,03	
06.01.358 (ΓCO 4067-87)	O_2	ост.		2,5	0,3	1
00.01.538 (1 CO 4007-87)	H_2	0,30-1,20		0,10	0,3	1
		, ,		0,10	0,03	
06.01.359 (ΓCO 4068-87)	N_2 O_2	ост. 40,0-76,0		4,0	0,4	2
00.01.339 (1 CO 4008-87)	H_2	0,30-1,20		0,10	0,4	
				0,10	0,03	
06.01.360 (ΓCO 4069-87)	N ₂	OCT.		0.025	0.015	2
06.01.360 (1 CO 4069-87)	O_2	0,250		0,025	0,015	2
	CH ₄	0,30-1,20		0,10	0,03	
06.01.061 (FG0.1050.05)	N ₂	A 457		0.025	0.000	
06.01.361 (ΓCO 4070-87)	O_2	0,475		0,025	0,020	1
	CH ₄	0,30-1,20		0,10	0,03	
06.04.060 (77.22.12.71	N ₂	ост.		0.0-	0.05	<u> </u>
06.01.362 (ΓCO 4071-87)	O_2	0,50-0,95		0,05	0,02	1
	CH ₄	0,30-1,20		0,10	0,03	
	N ₂	ост.				
06.01.363 (ΓCO 4072-87)	O_2	1,00-1,90		0,10	0,03	1
	CH ₄	0,30-1,20		0,10	0,03	
	N_2	ост.				
06.01.364 (ΓCO 4073-87)	O_2	2,50-4,75		0,25	0,05	1
	CH ₄	0,30-1,20		0,10	0,03	
	N_2	ост.				
06.01.365 (ΓCO 4074-87)	O_2	5,0-9,5		0,5	0,1	1
	CH ₄	0,30-1,20		0,10	0,03	
	N_2	OCT.				
06.01.366 (ΓCO 4075-87)	O_2	10,0-20,0		1,0	0,2	1
	CH_4	0,30-1,20		0,10	0,03	
	N_2	ост.				
06.01.367 (ΓCO 4076-87)	O_2	25,0-47,5		2,5	0,3	1
	CH_4	0,30-1,20		0,10	0,03	
	N_2	ост.				
06.01.368 (ΓCO 4077-87)	O_2	40,0-76,0		4,0	0,4	2
	CH_4	0,30-1,20		0,10	0,03	
	N_2	OCT.				
06.01.369 (ΓCO 4078-87)	H_2	2,0		0,1	0,05	1
	CO_2	0,5		0,2	0,1	
	N_2	ост.				
06.01.370 (ΓCO 4079-87)	H_2	4,0		0,1	0,05	1
	CO_2	0,5		0,2	0,1	
	N_2	ост.				
06.01.371 (ΓCO 4080-87)	H_2	2,5		0,2	0,04	1
	CO_2	2,0		0,2	0,2	
	N_2	ост.				
06.01.372 (ΓCO 4081-87)	H_2	4,8		0,2	0,04	1
· · ·	CO_2	2,0		0,2	0,2	
	N_2	ост.				
06.01.373 (ΓCO 4082-87)	H_2	3,50		0,05	0,04	1
	CO_2	6,0		0,2	0,2	
	N_2	OCT.				
06.01.374 (ΓCO 4083-87)	H ₂	3,90		0,05	0,04	1
`	$\widetilde{\text{CO}_2}$	6,0		0,2	0,2	
	N_2	ост.			<u> </u>	
06.01.375 (ΓCO 4084-87)	H ₂	14,0		1,0	0,3	1
(= = = = = = = = = = = = = = = = = = =	CO_2	28,5		1,5	0,3	

190005, Санкт-Петербург, Московский пр., 19 E-mail:info@vniim.ru

тел: (812) 315-11-45 факс: (812) 327-97-76 http://www.vniim.ru

		Номинальн	ые значения	Пределы	Пределы	_
Регистрационный	Компонентный		олярной) доли	допускаемого	допускаемой	Разряд
номер	состав		о компонента	отклонения	погрешности	33p
помер	Состав	%	млн ⁻¹ (ppm)	±Д	±Δ	P
06.01.376 (ΓCO 4085-87)	H_2	19,0	мэн (ррні)	1,0	0,3	1
00.01.570 (1 00 4005-07)	CO_2	21,0		1,5	0,3	1
	N_2	0ст.		1,5	0,3	
06.01.377 (ΓCO 4257-88)	CO+N ₂	001.	1,3-2,2	0,4	0,3	2
06.01.377 (ΓCO 4257-88) 06.01.378 (ΓCO 4258-88)	CO+N ₂		4,3-8,6	1.0	0,3	2
				, -	- 3.	
06.01.379 (ΓCO 4259-88)	CO+N ₂		13,0-32,6	1,7	0,7	1
06.01.380 (ΓCO 4260-88)	CO+N ₂		21,4	1,7	1,0	2
06.01.381 (ΓCO 4261-88)	CO+N ₂	0.50	50-95	5	2	1
06.01.382 (ΓCO 4262-88)	CO ₂ +N ₂	0,50	0.6	0,05	0,016	2
06.01.383 (ΓCO 4263-88)	СО+воздух		8,6	1,3	0,7	2
06.01.384 (ΓCO 4264-88)	СО+воздух		11,0-15,5	1,3	0,7	1
<u>06.01.385</u> (ΓCO 4265-88)	СО+воздух		69,0-130,0	7,0	2,5	1
06.01.386 (ΓCO 4266-88)	Н2+воздух	0,21-0,41		0,02	0,01	1
06.01.387 (ΓCO 4267-88)	Н ₂ +воздух	1,25		0,03	0,02	1
06.01.388 (ΓCO 4268-88)	Н ₂ +воздух	1,40-2,00		0,03	0,03	1
06.01.389 (ΓCO 4269-88)	CO ₂ +O ₂	4,0-5,0		0,5	0,2	2
06.01.390 (ΓCO 4270-88)	CO_2+O_2	8,0		0,5	0,2	1
06.01.391 (ΓCO 4271-88)	O_2	90,0		2,0	0,2	1
	CO_2	1,2		0,1	0,1	
	N_2	ост.				
06.01.392 (ΓCO 4272-88)	СН ₄ +воздух	0,75-2,50		0,06	0,02	1
06.01.393 (ΓCO 4273-88)	H_2+O_2	1,00-1,90		0,10	0,026	1
06.01.394 (ΓCO 4274-88)	O_2+H_2	0,50-0,95		0,05	0,013	1
06.01.395 (ΓCO 4275-88)	O_2+H_2	0,10-0,25		0,03	0,013	2
06.01.396 (ΓCO 4276-88)	SO ₂ +N ₂		100	10	4	1
06.01.397 (ΓCO 4277-88)	NH ₃ +N ₂	0,070		0.007	0,004	1
06.01.398 (ΓCO 4278-88)	NH ₃ +N ₂	0,130		0,011	0,005	0
06.01.399 (ΓCO 4279-88)	NH ₃ +N ₂	0,350		0,035	0,020	1
06.01.400 (ΓCO 4280-88)	NH ₃ +N ₂	0,650		0,050	0,025	1
06.01.401 (ΓCO 4281-88)	H ₂ S+N ₂	0,050		0,005	0,002	0
06.01.402 (ΓCO 4282-88)	H_2S+N_2	0,100		0,010	0,002	0
06.01.403 (ΓCO 4283-88)	H ₂ S+N ₂ H ₂ S+N ₂	1,00		0,10	0,04	1
06.01.404 (ΓCO 4284-88)	O_2+N_2	2,0		0,5	0,03	1
06.01.405 (ΓCO 4285-88)		4		1	0,05	1
06.01.406 (ΓCO 4286-88)	O ₂ +N ₂	30		1	0,03	1
	O ₂ +N ₂			•		
06.01.407 (ΓCO 4287-88)	O ₂ +Ar	90,0-97,5		0,5	0,10	1
06.01.408 (ΓCO 4288-88)	O ₂ +Ar	98,10-99,00		0,10	0,04	1
06.01.409 (ΓCO 4289-88)	H ₂ +N ₂	1,0		0,2	0,05	2
06.01.410 (ΓCO 4290-88)	H ₂ +N ₂	5,5		0,2	0,06	1
06.01.411 (ΓCO 4291-88)	N ₂ +H ₂	2,00-4,00		0,05	0,04	1
06.01.412 (ΓCO 4292-88)	С ₄ Н ₁₀ +воздух	0,20		0,05	0,02	2
06.01.413 (ΓCO 4293-88)	С ₄ Н ₁₀ +воздух	0,50		0,05	0,02	2
06.01.414 (ΓCO 4294-88)	С ₄ Н ₁₀ +воздух	0,80		0,05	0,02	1
06.01.415 (ΓCO 4295-88)	$C_3H_8+N_2$	0,12		0,05	0,01	2
06.01.416 (ΓCO 4296-88)	C ₃ H ₈ +He	0,22		0,05	0,02	2
06.01.417 (ΓCO 4297-88)	$C_3H_8+N_2$	0,50		0,05	0,011	1
06.01.418 (ΓCO 4298-88)	$C_3H_8+N_2$	0,90		0,05	0,018	1
06.01.419 (ΓCO 4299-88)	$C_6H_{14}+N_2$	0,26		0,02	0,007	1
06.01.420 (ΓCO 4300-88)	СН4+воздух	0,30-0,60		0,03	0,02	2
06.01.421 (ΓCO 4301-88)	СН ₄ +воздух	0,75-0,90		0,03	0,02	1
06.01.422 (ΓCO 4421-88)	CO+N ₂	0,210		0,025	0,010	2
06.01.423 (ΓCO 4422-88)	CO+N ₂	67-95		2	0,2	1
06.01.424 (ΓCO 4423-88)	CO+N ₂	67-95		2	0,8	2
06.01.425 (ΓCO 4424-88)	CO ₂ +N ₂	67-95		2	0,8	2
	2 . 2		1		,~	

		Номинан н	ые значения	Пределы	Пределы	<u> </u>
Регистрационный	Компонентный		олярной) доли	допускаемого	допускаемой	Разряд
номер	состав		го компонента	отклонения	погрешности	dEt
помер	COCTAB	%	млн ⁻¹ (ppm)	±Д	±Δ	P
06.01.426 (ΓCO 4426-88)	SO ₂ +N ₂	0,130	мян (ррні)	0,010	0,005	1
06.01.427 (ΓCO 4427-88)	NO ₂ +N ₂	0,40		0,04	0,016	1
06.01.428 (ΓCO 4428-88)	NO+N ₂	0,10	175	25	7	1
06.01.429 (ΓCO 4429-88)	NO+N ₂		215	20	10	1
06.01.431 (ΓCO 4430-88)	$C_3H_8+N_2$	1,00	213	0,10	0,02	1
06.01.432 (ΓCO 4431-88)	H ₂ S+N ₂	0,50		0,05	0,02	2
06.01.433 (ΓCO 4432-88)	$C_3H_8+N_2$	0,20		0,02	0,006	1
06.01.434 (ΓCO 4433-88)	H ₂ S+N ₂	1,50		0,15	0,06	2
06.01.435 (ΓCO 4434-88)	H ₂ S+N ₂	2,00		0,20	0,08	2
06.01.436 (ΓCO 4435-88)	H ₂ S+N ₂	4,50		0,45	0,18	2
06.01.437 (ΓCO 4443-88)	SO_2+N_2	1,00		0,08	0,04	2
06.01.438 (ΓCO 4444-88)	SO ₂ +N ₂	1,85		0,15	0,08	2
06.01.439 (ΓCO 4445-88)	СН ₄ +воздух	0,08-0,10		0,01	0,002	1
06.01.440 (ΓCO 4446-88)	СН4+воздух	0,16-0,20		0,02	0,004	1
06.01.441 (ΓCO 5004-89)	СО+воздух		1,0	0,5	0,3	2
06.01.442 (ΓCO 5005-89)	СО2+воздух	25,0-80,0		2,5	0,8	2
06.01.443 (ΓCO 5006-89)	C ₃ H ₈ +Ar		15	5	1,5	2
06.01.444 (ΓCO 5007-89)	C_3H_8+Ar		95	15	5	2
06.01.445 (ΓCO 5008-89)	C ₃ H ₈ +Ar		150	30	8	2
06.01.446 (ΓCO 5009-89)	C ₃ H ₈ +Ar	0,15		0,05	0,008	2
06.01.447 (ΓCO 5010-89)	C ₃ H ₈ +Ar	0,70		0,10	0,03	2
06.01.448 (ΓCO 5011-89)	C_3H_8+Ar	1,5		0,3	0,04	1
06.01.449 (ΓCO 5012-89)	C ₃ H ₈ +Ar	11		1	0,2	1
06.01.450 (ΓCO 5013-89)	H ₂ +He	2,5		0,5	0,05	1
06.01.451 (ΓCO 5014-89)	H ₂ +He	8,0-19,0		1,0	0,2	1
06.01.452 (ΓCO 5309-90)	Kr+He		2,5	0,4	0,4	2
06.01.453 (ΓCO 5310-90)	Kr+He		10,0	2,5	1,5	2
06.01.454 (ΓCO 5311-90)	Kr+He		100	25	12	2
06.01.455 (ΓCO 5312-90)	Xe+He Xe+He		2,5 10,0	0,4	0,4 1,5	2
06.01.456 (ΓCO 5313-90) 06.01.457 (ΓCO 5314-90)	Хе+Не		10,0	2,5 25	1,3	2
06.01.458 (ΓCO 5315-90)	$C_2H_4+N_2$		15,0	1,5	0,8	1
06.01.459 (ΓCO 5316-90)	$C_2H_4+N_2$		30,0	3,0	1,5	2
06.01.460 (ΓCO 5317-90)	$C_2H_4+N_2$		45,0	5,0	2,5	2
06.01.461 (ΓCO 5318-90)	$C_6H_{14}+N_2$	0,50-0,10	+5,0	0,01	0.002	1
06.01.462 (ΓCO 5319-90)	$C_6H_{14}+N_2$ $C_6H_{14}+N_2$	0,25		0,02	0,005	1
06.01.463 (ΓCO 5320-90)	C ₆ H ₁₄ +N ₂	0,45		0,02	0,009	1
06.01.464 (ΓCO 5321-90)	$C_6H_{14}+N_2$	0,250-0,475		0,025	0,010	1
06.01.465 ΓCO (5322-90)	С ₆ Н ₁₄ +воздух	0.250-0.475		0.025	0,010	1
06.01.466 ΓCO (5323-90)	С ₃ Н ₈ +воздух	0,60-0,80		0,03	0,03	2
06.01.467 (ΓCO 5324-90)	$C_3H_8+N_2$	0,05-0,10		0,01	0,002	1
06.01.468 (ΓCO 5325-90)	$C_3H_8+N_2$	0,20		0,02	0,004	1
06.01.469 (ΓCO 5326-90)	$C_3H_8+N_2$	0,50		0,05	0,010	1
06.01.470 (ΓCO 5327-90)	$C_3H_8+N_2$	0,50		0,05	0,015	2
06.01.471 (ΓCO 5328-90)	$C_3H_8+N_2$	0,60-0,95		0,05	0,015	1
06.01.472 (ΓCO 5329-90)	CHClF ₂ +воздух		40	6	3	2
06.01.473 (ΓCO 5330-90)	CHClF ₂ +воздух		100	14	6	2
06.01.474 (ΓCO 5331-90)	CF ₂ Cl ₂ +воздух		40	6	2,5	2
06.01.475 (ΓCO 5332-90)	СҒ2СІ2+воздух		80	10	5	2
06.01.476 (ΓCO 5333-90)	CO ₂ +N ₂	0,3-0,8		0,1	0,03	2
06.01.477 (ΓCO 5334-90)	CO ₂ +N ₂	1,3-4,0	22.72	0,2	0,03a	1
06.01.478 (ΓCO 5443-90)	С ₂ Вг ₂ F ₄ +воздух		32-70	7	5	2
06.01.479 (ΓCO 5831-91)	H ₂ +He		0,5	0,3	0,1	2
06.01.480 (ΓCO 5832-91) 06.01.481 (ΓCO 5833-91)	Ar+He O ₂ +He		0,5	0,3 0,3	0,1	2
06.01.481 (ΓCO 5834-91) 06.01.482 (ΓCO 5834-91)	CO+He		0,5	0,3	0,1	2
00.01. 1 02 (1 CO 3034-91)	COTIE		0,5	0,5	0,1	

190005, Санкт-Петербург, Московский пр., 19

Perucrpaturonnal noweep Компомер Компомер остав объемпой (молярной) доли отключения дальной отключения дальной доль отключения дальной дольной дальной да		-1	Иолимот п		Продолу	Продолу	_
Mail: (ppm)	Рогиотронноминий	V омпоненти тй			Пределы	Пределы	莊
Mail (ppin)	•		,	• /	-	-	den
0.60 1.484 (TCO \$835-91) Hy-Hie 1,0 0,3 0,2 2 2 0.60 1.484 (TCO \$835-91) Hy-Hie 1,0 0,3 0,2 2 2 0.60 1.485 (TCO \$835-91) My-Hie 1,0 0,3 0,2 2 2 0.60 1.486 (TCO \$835-91) My-Hie 1,0 0,3 0,2 2 2 0.60 1.487 (TCO \$839-91) My-Hie 1,0 0,3 0,2 2 2 0.60 1.487 (TCO \$839-91) My-Hie 1,0 0,3 0,2 2 2 0.60 1.487 (TCO \$839-91) My-Hie 1,0 0,3 0,2 2 2 0.60 1.487 (TCO \$840-91) My-Hie 1,0 0,3 0,2 2 2 0.60 1.487 (TCO \$841-91) My-Hie 1,0 0,3 0,2 2 2 0.60 1.497 (TCO \$842-91) My-Hie 5,0 1,5 0,8 2 0.60 1.497 (TCO \$843-91) My-Hie 5,0 1,5 0,8 2 0.60 1.497 (TCO \$843-91) My-Hie 5,0 1,5 0,8 2 0.60 1.497 (TCO \$843-91) My-Hie 5,0 1,5 0,8 2 0.60 1.497 (TCO \$843-91) My-Hie 5,0 1,5 0,8 2 0.60 1.497 (TCO \$843-91) My-Hie 5,0 1,5 0,8 2 0.60 1.497 (TCO \$843-91) My-Hie 5,0 1,5 0,8 2 0.60 1.497 (TCO \$843-91) My-Hie 5,0 1,5 0,8 2 0.60 1.497 (TCO \$843-91) My-Hie 10,0 2,5 1,5 0,8 2 0.60 1.497 (TCO \$843-91) My-Hie 10,0 2,5 1,5 2 0.60 1.497 (TCO \$843-91) My-Hie 10,0 2,5 1,5 2 0.60 1.497 (TCO \$853-91) My-Hie 10,0 2,5 1,5 2 0.60 1.497 (TCO \$853-91) My-Hie 10,0 2,5 1,5 2 0.60 1.497 (TCO \$853-91) My-Hie 10,0 2,5 1,5 2 0.60 1.497 (TCO \$853-91) My-Hie 10,0 2,5 1,5 2 0.60 1.597 (TCO \$853-91) My-Hie 10,0 2,5 1,5 2 0.60 1.597 (TCO \$853-91) My-Hie 10,0 2,5 1,5 2 0.60 1.597 (TCO \$853-91) My-Hie 10,0 2,5 1,5 2 0.60 1.597 (TCO \$853-91) My-Hie 10,0 2,5 1,5 2 0.60 1.597 (TCO \$853-91) My-Hie 10,0 2,5 1,5 2 0.60 1.597 (TCO \$853-91) My-Hie 10,0 2,5 1,5 2 0.60 1.597 (TCO \$853-91) My-Hie 10,0 2,5 1,5 2 0.60 1.597 (TCO \$853-91) My-Hie 10,0 2,5 1,5 0.5 3	номер	COCTAB			-	•	Pē
D601.484 (TCO S836-91) H-+He 1.0 0.3 0.2 2 2 2 2 2 2 2 2 2	06.01.483 (ECO 5835-91)	CH.+He	/0	** /			2
06.01.485 (TCO S837-91)					,	,	
06.01.486 (TCO \$838-91) Ar+He 1.0 0.3 0.2 2 2 06.01.487 (TCO \$839-91) Oy+He 1.0 0.3 0.2 2 2 06.01.488 (TCO \$840-91) Oy+He 1.0 0.3 0.2 2 2 06.01.488 (TCO \$841-91) CH ₁ +He 1.0 0.3 0.2 2 2 06.01.489 (TCO \$841-91) CH ₂ +He 1.0 0.3 0.2 2 2 06.01.489 (TCO \$841-91) H ₂ +He 5.0 1.5 0.8 2 06.01.491 (TCO \$843-91) N ₂ +He 5.0 1.5 0.8 2 06.01.491 (TCO \$843-91) N ₂ +He 5.0 1.5 0.8 2 06.01.492 (TCO \$844-91) Ar+He 5.0 1.5 0.8 2 06.01.492 (TCO \$844-91) Oy+He 5.0 1.5 0.8 2 06.01.494 (TCO \$844-91) Oy+He 5.0 1.5 0.8 2 06.01.495 (TCO \$845-91) Oy+He 5.0 1.5 0.8 2 06.01.495 (TCO \$845-91) Oy+He 5.0 1.5 0.8 2 06.01.495 (TCO \$845-91) Oy+He 10.0 2.5 1.5 0.8 2 06.01.496 (TCO \$845-91) Oy+He 10.0 2.5 1.5 2 06.01.496 (TCO \$845-91) Oy+He 10.0 2.5 1.5 2 06.01.496 (TCO \$845-91) Oy+He 10.0 2.5 1.5 2 06.01.496 (TCO \$855-91) Oy+He 10.0 2.5 1.5 2 06.01.496 (TCO \$855-91) Oy+He 10.0 2.5 1.5 2 06.01.500 (TCO \$852-91) Oy+He 10.0 2.5 1.5 2 06.01.500 (TCO \$852-91) Oy+He 10.0 2.5 1.5 2 06.01.500 (TCO \$852-91) Oy+He 10.0 2.5 1.5 2 06.01.500 (TCO \$853-91) Oy+He 10.0 2.5 1.5 2 06.01.500 (TCO \$853-91) Oy+He 10.0 2.5 3 3 2 06.01.500 (TCO \$853-91) Oy+He 20 5 3 2 06.01.500 (TCO \$853-91) Oy+He 20 5 3 2 06.01.500 (TCO \$855-91) Oy+He 20 5 3 2 06.01.510 (TCO \$856-91) Oy+He 50 15 8 2 06.01.510 (TCO \$856-91) Oy+He 50 15 8 2 06.01.510 (TCO \$856-91) Oy+He 50 15 0 2 06.01.510 (TCO \$856-91) Oy+He				,	/		
06.01.487 (TCO 5839-91)				,			
06.01.488 (TCO 5840-91) CO+He				,		,	
06.01.489 (TCO \$842-91) H ₂ +He		-		,	/		
06.01.490 (TCO \$842-91) H ₂ +He 5.0 1.5 0.8 2 06.01.491 (TCO \$843-91) N ₂ +He 5.0 1.5 0.8 2 06.01.492 (TCO \$843-91) N ₂ +He 5.0 1.5 0.8 2 06.01.493 (TCO \$845-91) CO+He 5.0 1.5 0.8 2 06.01.493 (TCO \$845-91) CO+He 5.0 1.5 0.8 2 06.01.494 (TCO \$847-91) CH ₄ +He 5.0 1.5 0.8 2 06.01.495 (TCO \$847-91) CH ₄ +He 5.0 1.5 0.8 2 06.01.495 (TCO \$847-91) CH ₄ +He 10.0 2.5 1.5 0.8 2 06.01.495 (TCO \$848-91) N ₂ +He 10.0 2.5 1.5 2 06.01.496 (TCO \$848-91) N ₂ +He 10.0 2.5 1.5 2 06.01.496 (TCO \$848-91) N ₂ +He 10.0 2.5 1.5 2 06.01.499 (TCO \$859-91) N ₂ +He 10.0 2.5 1.5 2 06.01.499 (TCO \$859-91) O ₂ +He 10.0 2.5 1.5 2 06.01.500 (TCO \$852-91) O ₂ +He 10.0 2.5 1.5 2 06.01.500 (TCO \$853-91) O ₂ +He 10.0 2.5 1.5 2 06.01.500 (TCO \$853-91) O ₂ +He 10.0 2.5 1.5 2 06.01.500 (TCO \$853-91) O ₂ +He 10.0 2.5 1.5 2 06.01.500 (TCO \$853-91) O ₂ +He 10.0 2.5 1.5 2 06.01.500 (TCO \$853-91) O ₂ +He 10.0 2.5 1.5 2 06.01.500 (TCO \$859-91) O ₂ +He 10.0 2.5 1.5 2 06.01.500 (TCO \$859-91) O ₂ +He 10.0 2.5 1.5 2 06.01.500 (TCO \$859-91) O ₂ +He 20 5 3 2 06.01.500 (TCO \$859-91) O ₂ +He 20 5 3 2 06.01.500 (TCO \$859-91) O ₂ +He 20 5 3 2 06.01.500 (TCO \$859-91) O ₂ +He 20 5 3 2 06.01.500 (TCO \$859-91) O ₂ +He 20 5 3 2 06.01.500 (TCO \$86-91) N ₂ +He 20 5 3 2 06.01.500 (TCO \$86-91) N ₂ +He 50 15 8 2 06.01.500 (TCO \$86-91) N ₂ +He 50 15 8 2 06.01.511 (TCO \$86-91) N ₂ +He 50 15 8 2 06.01.512 (TCO \$86-91) N ₂ +He 50 15 8 2 06.01.512 (TCO \$86-91) N ₂ +He 50 15 8 2 06.01.512 (TCO \$86-91) N ₂ +He 50 15 8 2 06.01.512 (TCO \$86-91) N ₂ +He 50 15 8 2 06.01.512 (TCO \$86-91) N ₂ +He 50 15 10 2 06.01.512 (TCO \$86-91) N ₂ +He 70 15 10 2 06.01.512 (,	, ,	,	
Dec.				,		,	
06.01.492 (ITCO 5844-91)					•		
Doc. 0.1493 (TCO 5845-91)							
06.01.494 (ITCO 5846-91) CO+He 5.0 1.5 0.8 2 06.01.495 (ITCO 5847-91) CH ₃ +He 5.0 1.5 0.8 2 06.01.495 (ITCO 5848-91) H ₂ +He 10.0 2.5 1.5 2 06.01.497 (ITCO 5849-91) N ₂ +He 10.0 2.5 1.5 2 06.01.497 (ITCO 5849-91) N ₂ +He 10.0 2.5 1.5 2 06.01.498 (ITCO 5850-91) Ar+He 10.0 2.5 1.5 2 06.01.498 (ITCO 5850-91) Ar+He 10.0 2.5 1.5 2 06.01.498 (ITCO 5850-91) O ₂ +He 10.0 2.5 1.5 2 06.01.500 (ITCO 5852-91) O ₂ +He 10.0 2.5 1.5 2 06.01.500 (ITCO 5852-91) O ₂ +He 10 0.0 2.5 1.5 2 06.01.500 (ITCO 5853-91) O ₂ +He 20 5 3 2 06.01.501 (ITCO 5853-91) N ₂ +He 20 5 3 2 06.01.502 (ITCO 5856-91) N ₂ +He 20 5 3 2 06.01.502 (ITCO 5856-91) N ₂ +He 20 5 3 2 06.01.504 (ITCO 5856-91) O ₂ +He 20 5 3 2 06.01.506 (ITCO 5858-91) O ₂ +He 20 5 3 2 06.01.507 (ITCO 5859-91) O ₂ +He 20 5 3 2 06.01.507 (ITCO 5859-91) O ₂ +He 20 5 3 2 06.01.507 (ITCO 5859-91) O ₂ +He 20 5 3 2 06.01.507 (ITCO 5859-91) O ₂ +He 20 5 3 2 06.01.507 (ITCO 5869-91) H ₂ +He 20 5 3 2 06.01.507 (ITCO 5869-91) H ₂ +He 50 15 8 2 06.01.509 (ITCO 5869-91) N ₂ +He 50 15 8 2 06.01.512 (ITCO 5869-91) N ₂ +He 50 15 8 2 06.01.512 (ITCO 5869-91) N ₂ +He 50 15 8 2 06.01.513 (ITCO 5869-91) N ₂ +He 50 15 8 2 06.01.513 (ITCO 5869-91) N ₂ +He 50 15 8 2 06.01.514 (ITCO 5869-91) N ₂ +He 50 15 8 2 06.01.515 (ITCO 5869-91) N ₂ +He 50 15 8 2 06.01.516 (ITCO 5869-91) N ₂ +He 50 15 8 2 06.01.516 (ITCO 5869-91) N ₂ +He 50 15 10 2 06.01.516 (ITCO 5869-91) N ₂ +He 70 15 10 2 06.01.516 (ITCO 5869-91) N ₂ +He 70 15 10 2 06.01.517 (ITCO 5869-91) N ₂ +He 70 15 10 2 06.01.518 (ITCO 5869-91) N ₂ +He 70 15 10 2 06.01.519 (ITCO 5879-91) O ₂ +He 70 15 10 2 06.01.521 (ITCO 5879-9							
06.01.495 (TCO \$847-91) CH ₄ +He 5.0 1.5 0.8 2 06.01.496 (TCO \$848-91) H ₂ +He 10.0 2.5 1.5 2 06.01.497 (TCO \$849-91) N ₂ +He 10.0 2.5 1.5 2 06.01.497 (TCO \$849-91) N ₂ +He 10.0 2.5 1.5 2 06.01.498 (TCO \$850-91) 0.2+He 10.0 2.5 1.5 2 06.01.590 (TCO \$851-91) 0.2+He 10.0 2.5 1.5 2 06.01.590 (TCO \$851-91) 0.2+He 10.0 2.5 1.5 2 06.01.590 (TCO \$853-91) CO+He 10 0.2 2.5 1.5 2 06.01.500 (TCO \$853-91) CH ₂ +He 10.0 2.5 1.5 2 06.01.501 (TCO \$853-91) H ₂ +He 20 5 3 2 06.01.502 (TCO \$854-91) H ₂ +He 20 5 3 2 06.01.503 (TCO \$855-91) N ₂ +He 20 5 3 2 06.01.505 (TCO \$855-91) O ₂ +He 20 5 3 2 06.01.505 (TCO \$856-91) A ₇ +He 20 5 3 2 06.01.505 (TCO \$856-91) O ₂ +He 20 5 3 2 06.01.505 (TCO \$857-91) O ₂ +He 20 5 3 2 06.01.505 (TCO \$859-91) CH ₄ +He 20 5 3 2 06.01.505 (TCO \$859-91) H ₂ +He 20 5 3 2 06.01.506 (TCO \$869-91) H ₂ +He 20 5 3 2 06.01.506 (TCO \$869-91) H ₂ +He 50 15 8 2 06.01.508 (TCO \$860-91) H ₂ +He 50 15 8 2 06.01.508 (TCO \$860-91) N ₂ +He 50 15 8 2 06.01.510 (TCO \$862-91) N ₂ +He 50 15 8 2 06.01.512 (TCO \$864-91) O ₂ +He 50 15 8 2 06.01.513 (TCO \$866-91) O ₂ +He 50 15 8 2 06.01.513 (TCO \$866-91) N ₂ +He 50 15 8 2 06.01.513 (TCO \$866-91) N ₂ +He 50 15 8 2 06.01.515 (TCO \$866-91) N ₂ +He 50 15 8 2 06.01.516 (TCO \$868-91) N ₂ +He 70 15 10 2 06.01.516 (TCO \$869-91) N ₂ +He 70 15 10 2 06.01.517 (TCO \$869-91) N ₂ +He 70 15 10 2 06.01.518 (TCO \$869-91) N ₂ +He 70 15 10 2 06.01.518 (TCO \$869-91) N ₂ +He 70 15 10 2 06.01.512 (TCO \$869-91) N ₂ +He 70 15 10 2 06.01.512 (TCO \$869-91) N ₂ +He 70 15 10 2 06.01.522 (TCO \$874-91) N ₂ +He 100 25 15 2 06.01.522 (TCO \$874-91) N ₂ +He 100 25 15 2							
06.01.496 (TCO \$848-91) H2+He 10,0 2,5 1,5 2 06.01.497 (TCO \$849-91) N2+He 10,0 2,5 1,5 2 06.01.498 (TCO \$850-91) Ar+He 10,0 2,5 1,5 2 06.01.499 (TCO \$850-91) Ar+He 10,0 2,5 1,5 2 06.01.499 (TCO \$851-91) O2+He 10,0 2,5 1,5 2 06.01.500 (TCO \$852-91) CO+He 10 0,0 2,5 1,5 2 06.01.501 (TCO \$852-91) CO+He 10 0,0 2,5 1,5 2 06.01.502 (TCO \$852-91) CH4-He 20 5 3 2 06.01.502 (TCO \$853-91) CH4-He 20 5 3 2 06.01.503 (TCO \$855-91) N2+He 20 5 3 2 06.01.503 (TCO \$855-91) N2+He 20 5 3 2 06.01.505 (TCO \$855-91) O2+He 20 5 3 2 06.01.505 (TCO \$855-91) O2+He 20 5 3 2 06.01.505 (TCO \$858-91) CH4-He 20 5 3 2 06.01.505 (TCO \$860-91) H2+He 50 15 8 2 06.01.507 (TCO \$850-91) CH4-He 50 15 8 2 06.01.512 (TCO \$860-91) N2+He 50 15 8 2 06.01.512 (TCO \$860-91) O2+He 50 15 8 2 06.01.512 (TCO \$860-91) M2+He 50 15 8 2 06.01.513 (TCO \$860-91) M2+He 50 15 8 2 06.01.514 (TCO \$860-91) M2+He 50 15 8 2 06.01.515 (TCO \$860-91) M2+He 70 15 10 2 06.01.516 (TCO \$860-91) M2+He 70 15 10 2 06.01.517 (TCO \$860-91) M2+He 70 15 10 2 06.01.527 (TCO \$871-91) M2+He 70 15 10 2 06.01.527 (TCO \$8						/	
06.01.497 (TCO \$849-91) N ₂ +He 10,0 2,5 1,5 2 06.01.498 (TCO \$850-91) Ar+He 10,0 2,5 1,5 2 06.01.499 (TCO \$851-91) O ₂ +He 10,0 2,5 1,5 2 06.01.500 (TCO \$852-91) CO+He 10 0 2,5 1,5 2 06.01.500 (TCO \$852-91) CO+He 10,0 2,5 1,5 2 06.01.501 (TCO \$853-91) CH ₄ +He 10,0 2,5 1,5 2 06.01.502 (TCO \$854-91) H ₂ +He 20 5 3 2 06.01.503 (TCO \$854-91) H ₂ +He 20 5 3 2 06.01.503 (TCO \$855-91) N ₂ +He 20 5 3 2 06.01.503 (TCO \$856-91) Ar+He 20 5 3 2 06.01.505 (TCO \$856-91) O ₂ +He 20 5 3 2 06.01.505 (TCO \$857-91) O ₂ +He 20 5 3 2 06.01.506 (TCO \$858-91) CH ₄ +He 20 5 3 2 06.01.506 (TCO \$859-91) CH ₄ +He 20 5 3 2 06.01.506 (TCO \$869-91) N ₂ +He 50 15 8 2 06.01.506 (TCO \$860-91) N ₂ +He 50 15 8 2 06.01.506 (TCO \$860-91) N ₂ +He 50 15 8 2 06.01.506 (TCO \$860-91) N ₂ +He 50 15 8 2 06.01.510 (TCO \$860-91) N ₂ +He 50 15 8 2 06.01.510 (TCO \$860-91) N ₂ +He 50 15 8 2 06.01.511 (TCO \$860-91) N ₂ +He 50 15 8 2 06.01.513 (TCO \$860-91) N ₂ +He 50 15 8 2 06.01.513 (TCO \$860-91) N ₂ +He 50 15 8 2 06.01.513 (TCO \$860-91) N ₂ +He 50 15 8 2 06.01.514 (TCO \$860-91) N ₂ +He 50 15 10 2 06.01.515 (TCO \$860-91) N ₂ +He 70 15 10 2 06.01.516 (TCO \$869-91) N ₂ +He 70 15 10 2 06.01.517 (TCO \$869-91) N ₂ +He 70 15 10 2 06.01.517 (TCO \$869-91) N ₂ +He 70 15 10 2 06.01.517 (TCO \$869-91) N ₂ +He 70 15 10 2 06.01.517 (TCO \$870-91) N ₂ +He 70 15 10 2 06.01.517 (TCO \$870-91) N ₂ +He 70 15 10 2 06.01.517 (TCO \$870-91) N ₂ +He 70 15 10 2 06.01.517 (TCO \$870-91) N ₂ +He 70 15 10 2 06.01.517 (TCO \$870-91) N ₂ +He 70 15 10 2 06.01.517 (TCO \$870-91) N ₂ +He 70 15 10 2 06.01.517 (TCO \$870-91) N ₂ +He 100 25 15 2 06.01.527 (TC					· · · · · · · · · · · · · · · · · · ·	,	
06.01.498 (TCO \$850-91) Ar+He 10,0 2,5 1,5 2 06.01.499 (TCO \$851-91) O ₂ +He 10,0 2,5 1,5 2 06.01.500 (TCO \$852-91) CO+He 10 0 2,5 1,5 2 06.01.501 (TCO \$852-91) CH ₄ +He 10,0 2,5 1,5 2 06.01.501 (TCO \$853-91) CH ₄ +He 10,0 2,5 1,5 2 06.01.502 (TCO \$854-91) H ₂ +He 20 5 3 2 06.01.503 (TCO \$855-91) N ₂ +He 20 5 3 2 06.01.503 (TCO \$855-91) N ₂ +He 20 5 3 2 06.01.503 (TCO \$855-91) N ₂ +He 20 5 3 2 06.01.505 (TCO \$857-91) O ₂ +He 20 5 3 2 06.01.505 (TCO \$858-91) CH ₄ +He 20 5 3 2 06.01.505 (TCO \$858-91) CH ₄ +He 20 5 3 2 06.01.505 (TCO \$858-91) CH ₄ +He 20 5 3 2 06.01.506 (TCO \$858-91) CH ₄ +He 20 5 3 2 06.01.506 (TCO \$860-91) H ₂ +He 50 15 8 2 06.01.507 (TCO \$860-91) N ₂ +He 50 15 8 2 06.01.507 (TCO \$860-91) N ₂ +He 50 15 8 2 06.01.510 (TCO \$860-91) N ₂ +He 50 15 8 2 06.01.510 (TCO \$860-91) N ₂ +He 50 15 8 2 06.01.511 (TCO \$863-91) O ₂ +He 50 15 8 2 06.01.512 (TCO \$864-91) CO+He 50 15 8 2 06.01.513 (TCO \$866-91) CO+He 50 15 8 2 06.01.513 (TCO \$866-91) CO+He 50 15 8 2 06.01.513 (TCO \$866-91) N ₂ +He 50 15 8 2 06.01.513 (TCO \$866-91) CO+He 50 15 8 2 06.01.513 (TCO \$866-91) N ₂ +He 70 15 10 2 06.01.515 (TCO \$869-91) O ₂ +He 70 15 10 2 06.01.515 (TCO \$869-91) O ₂ +He 70 15 10 2 06.01.516 (TCO \$869-91) O ₂ +He 70 15 10 2 06.01.517 (TCO \$869-91) O ₂ +He 70 15 10 2 06.01.518 (TCO \$869-91) O ₂ +He 70 15 10 2 06.01.518 (TCO \$869-91) O ₂ +He 70 15 10 2 06.01.518 (TCO \$877-91) CH ₄ +He 70 15 10 2 06.01.520 (TCO \$877-91) CH ₄ +He 100 25 15 2 06.01.520 (TCO \$879-91) N ₂ +He 100 25 15 2 06.01.520 (TCO \$879-91) N ₂ +He 100 25 15 2 06.01.520 (TCO \$879-91) N ₂ +He 100 25 15 2 06.01.520 (TCO \$,			
06.01.499 (FCO 5851-91) O ₂ +He 10,0 2,5 1,5 2 06.01.500 (FCO 5852-91) CO+He 10 2,5 1,5 2 06.01.501 (FCO 5853-91) CH ₄ +He 10,0 2,5 1,5 2 06.01.502 (FCO 5854-91) H ₂ +He 20 5 3 2 06.01.503 (FCO 5855-91) N ₂ +He 20 5 3 2 06.01.503 (FCO 5855-91) N ₂ +He 20 5 3 2 06.01.504 (FCO 5855-91) O ₂ +He 20 5 3 2 06.01.505 (FCO 5857-91) O ₂ +He 20 5 3 2 06.01.505 (FCO 5857-91) O ₂ +He 20 5 3 2 06.01.505 (FCO 5858-91) CH ₄ +He 20 5 3 2 06.01.506 (FCO 5858-91) CH ₄ +He 20 5 3 2 06.01.506 (FCO 5858-91) CH ₄ +He 50 15 8 2 06.01.508 (FCO 5860-91) N ₂ +He 50 15 8 2 06.01.508 (FCO 5860-91) N ₂ +He 50 15 8 2 06.01.510 (FCO 5862-91) O ₂ +He 50 15 8 2 06.01.510 (FCO 5863-91) O ₂ +He 50 15 8 2 06.01.511 (FCO 5863-91) O ₂ +He 50 15 8 2 06.01.512 (FCO 5864-91) CH ₄ +He 50 15 8 2 06.01.512 (FCO 5864-91) CH ₄ +He 50 15 8 2 06.01.512 (FCO 5864-91) CH ₄ +He 50 15 8 2 06.01.513 (FCO 5863-91) N ₂ +He 50 15 8 2 06.01.513 (FCO 5863-91) N ₂ +He 70 15 10 2 06.01.513 (FCO 5863-91) N ₂ +He 70 15 10 2 06.01.513 (FCO 5863-91) N ₂ +He 70 15 10 2 06.01.513 (FCO 5863-91) N ₂ +He 70 15 10 2 06.01.513 (FCO 5863-91) N ₂ +He 70 15 10 2 06.01.513 (FCO 5863-91) N ₂ +He 70 15 10 2 06.01.513 (FCO 5873-91) N ₂ +He 70 15 10 2 06.01.513 (FCO 5873-91) N ₂ +He 70 15 10 2 06.01.513 (FCO 5873-91) N ₂ +He 70 15 10 2 06.01.513 (FCO 5873-91) N ₂ +He 70 15 10 2 06.01.513 (FCO 5873-91) N ₂ +He 70 15 10 2 06.01.513 (FCO 5873-91) N ₂ +He 70 15 10 2 06.01.513 (FCO 5873-91) N ₂ +He 100 25 15 2 06.01.522 (FCO 5873-91) N ₂ +He 100 25 15 2 06.01.522 (FCO 5873-91) N ₂ +He 100 25 15 2 06.01.522 (FCO 5873-91) N ₂ +He 100 25 15 2 06.01.522 (FCO 5				,			
06.01.500 (FCO 5852-91) CO+He 10 2,5 1,5 2 2 06.01.501 (FCO 5853-91) CH ₄ +He 20 5 3 2 2 06.01.502 (FCO 5854-91) H ₂ +He 20 5 3 2 2 06.01.503 (FCO 5854-91) N ₂ +He 20 5 3 2 2 06.01.503 (FCO 5855-91) N ₂ +He 20 5 3 2 2 06.01.503 (FCO 5855-91) N ₂ +He 20 5 3 2 2 06.01.505 (FCO 5855-91) O ₂ +He 20 5 3 2 2 06.01.505 (FCO 5858-91) O ₂ +He 20 5 3 2 2 06.01.505 (FCO 5858-91) CH ₄ +He 20 5 3 2 06.01.505 (FCO 5858-91) CH ₄ +He 20 5 3 2 06.01.505 (FCO 5869-91) H ₂ +He 50 15 8 2 06.01.505 (FCO 5861-91) N ₂ +He 50 15 8 2 06.01.510 (FCO 5862-91) Ar+He 50 15 8 2 06.01.511 (FCO 5862-91) Ar+He 50 15 8 2 06.01.512 (FCO 5864-91) CO+He 50 15 8 2 06.01.512 (FCO 5864-91) CO+He 50 15 8 2 06.01.513 (FCO 5865-91) CH ₄ +He 50 15 8 2 06.01.513 (FCO 5865-91) CH ₄ +He 50 15 8 2 06.01.513 (FCO 5865-91) CH ₄ +He 50 15 8 2 06.01.513 (FCO 5865-91) N ₂ +He 70 15 10 2 06.01.515 (FCO 5865-91) N ₂ +He 70 15 10 2 06.01.515 (FCO 5865-91) N ₂ +He 70 15 10 2 06.01.517 (FCO 5869-91) O ₂ +He 70 15 10 2 06.01.518 (FCO 5869-91) O ₂ +He 70 15 10 2 06.01.518 (FCO 5879-91) CO+He 70 15 10 2 06.01.518 (FCO 5879-91) CO+He 70 15 10 2 06.01.518 (FCO 5879-91) CO+He 70 15 10 2 06.01.521 (FCO 5879-91) O ₂ +He 70 15 10 2 06.01.522 (FCO 5878-91) O ₂ +He 100 25 15 2 06.01.522 (FCO 5878-91) O ₂ +He 100 25 15 2 06.01.522 (FCO 5878-91) O ₂ +He 100 25 15 2 06.01.522 (FCO 5878-91) O ₂ +He 100 25 15 2 06.01.522 (FCO 5878-91) O ₂ +He 100 25 15 2 06.01.522 (FCO 5878-91) O ₂ +He 100 25 15 2 06.01.522 (FCO 5878-91) O ₂ +He 100 25 15 2 06.01.522 (FCO 5878-91) O ₂ +He 100 25 15 2 06.01.522 (FCO 5878-91) O ₂ +He 100 25 15 2 06.				- 3 -			
06.01.501 (TCO 5853-91) CH4+He 10,0 2,5 1,5 2 2 2 2 2 1,5 2 2 2 2 5 3 2 2 2 2 2 5 3 2 2 2 2 2 2 5 3 2 2 2 2 2 2 5 3 2 2 2 2 2 2 2 2 2				- 7 -			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				-		,	
06.01.503 (FCO 5855-91) N ₂ +He 20 5 3 2 06.01.504 (FCO 5856-91) Ar+He 20 5 3 2 06.01.505 (FCO 5857-91) O ₂ +He 20 5 3 2 06.01.506 (FCO 5858-91) CO+He 20 5 3 2 06.01.506 (FCO 5858-91) CO+He 20 5 3 2 06.01.506 (FCO 5858-91) CO+He 20 5 3 2 06.01.506 (FCO 5858-91) CH ₄ +He 20 5 3 2 06.01.508 (FCO 5869-91) H ₂ +He 50 15 8 2 06.01.509 (FCO 5861-91) N ₂ +He 50 15 8 2 06.01.510 (FCO 5861-91) N ₂ +He 50 15 8 2 06.01.510 (FCO 5862-91) Ar+He 50 15 8 2 06.01.511 (FCO 5863-91) O ₂ +He 50 15 8 2 06.01.512 (FCO 5864-91) O ₂ +He 50 15 8 2 06.01.513 (FCO 5865-91) CH ₄ +He 50 15 8 2 06.01.513 (FCO 5865-91) N ₂ +He 50 15 8 2 06.01.515 (FCO 5866-91) N ₂ +He 70 15 10 2 06.01.515 (FCO 5869-91) N ₂ +He 70 15 10 2 06.01.515 (FCO 5869-91) O ₂ +He 70 15 10 2 06.01.515 (FCO 5869-91) O ₂ +He 70 15 10 2 06.01.515 (FCO 5869-91) O ₂ +He 70 15 10 2 06.01.516 (FCO 5869-91) O ₂ +He 70 15 10 2 06.01.517 (FCO 5869-91) O ₂ +He 70 15 10 2 06.01.518 (FCO 5870-91) O ₂ +He 70 15 10 2 06.01.519 (FCO 5870-91) O ₂ +He 70 15 10 2 06.01.519 (FCO 5870-91) O ₂ +He 70 15 10 2 06.01.520 (FCO 5870-91) O ₂ +He 100 25 15 2 06.01.521 (FCO 5870-91) O ₂ +He 100 25 15 2 06.01.522 (FCO 5870-91) O ₂ +He 100 25 15 2 06.01.523 (FCO 5870-91) O ₂ +He 100 25 15 2 06.01.523 (FCO 5870-91) O ₂ +He 100 25 15 2 06.01.525 (FCO 5870-91) O ₂ +He 100 25 15 2 06.01.525 (FCO 5870-91) O ₂ +He 100 25 15 2 06.01.525 (FCO 5870-91) O ₂ +He 100 25 15 2 06.01.525 (FCO 5870-91) O ₂ +He 100 25 15 2 06.01.525 (FCO 5870-91) O ₂ +He 100 25 15 2 06.01.525 (FCO 5881-91) O ₂ +He 200 50 30 2 06.01.529 (FCO 5881-91) O ₂ +He 200 50 30 2 06.01.529 (FCO 5881-91) O		·		- 1 -			
06.01.504 (FCO 5856-91) Ar+He 20 5 3 2 06.01.505 (FCO 5857-91) O ₂ +He 20 5 3 2 06.01.505 (FCO 5858-91) CO+He 20 5 3 2 06.01.507 (FCO 5859-91) CO+He 20 5 3 2 06.01.507 (FCO 5859-91) CO+He 20 5 3 2 06.01.508 (FCO 5860-91) H ₂ +He 50 15 8 2 06.01.509 (FCO 5861-91) N ₂ +He 50 15 8 2 06.01.510 (FCO 5861-91) N ₂ +He 50 15 8 2 06.01.511 (FCO 5863-91) O ₂ +He 50 15 8 2 06.01.512 (FCO 5864-91) CO+He 50 15 8 2 06.01.512 (FCO 5864-91) CO+He 50 15 8 2 06.01.513 (FCO 5864-91) CO+He 50 15 8 2 06.01.514 (FCO 5865-91) CH ₄ +He 50 15 8 2 06.01.515 (FCO 5866-91) N ₂ +He 70 15 10 2 06.01.516 (FCO 5868-91) N ₂ +He 70 15 10 2 06.01.516 (FCO 5868-91) O ₂ +He 70 15 10 2 06.01.516 (FCO 5869-91) O ₂ +He 70 15 10 2 06.01.516 (FCO 5869-91) O ₂ +He 70 15 10 2 06.01.517 (FCO 5869-91) CO+He 70 15 10 2 06.01.519 (FCO 5870-91) CO+He 70 15 10 2 06.01.519 (FCO 5870-91) CO+He 70 15 10 2 06.01.520 (FCO 5873-91) CH ₄ +He 70 15 10 2 06.01.520 (FCO 5873-91) O ₂ +He 100 25 15 2 06.01.521 (FCO 5876-91) O ₂ +He 100 25 15 2 06.01.522 (FCO 5873-91) N ₂ +He 100 25 15 2 06.01.523 (FCO 5876-91) CH ₄ +He 100 25 15 2 06.01.523 (FCO 5876-91) CH ₄ +He 100 25 15 2 06.01.523 (FCO 5876-91) CH ₄ +He 100 25 15 2 06.01.523 (FCO 5876-91) CH ₄ +He 100 25 15 2 06.01.523 (FCO 5876-91) O ₂ +He 100 25 15 2 06.01.523 (FCO 5876-91) O ₂ +He 100 25 15 2 06.01.523 (FCO 5876-91) O ₂ +He 100 25 15 2 06.01.523 (FCO 5876-91) O ₂ +He 100 25 15 2 06.01.523 (FCO 5876-91) O ₂ +He 100 25 15 2 06.01.523 (FCO 5876-91) O ₂ +He 100 25 15 2 06.01.523 (FCO 5881-91) O ₂ +He 200 50 30 2 06.01.529 (FCO 5881-91) O ₂ +He 200 50 30 2 06.01.529 (FCO 5881-91)		_					
06.01.505 (FCO 5857-91) O ₂ +He 20 5 3 2 06.01.506 (FCO 5858-91) CO+He 20 5 3 2 06.01.507 (FCO 5858-91) CH ₄ +He 20 5 3 2 06.01.507 (FCO 5858-91) CH ₄ +He 20 5 3 2 06.01.508 (FCO 5860-91) H ₂ +He 50 15 8 2 06.01.509 (FCO 5861-91) N ₂ +He 50 15 8 2 06.01.510 (FCO 5861-91) N ₂ +He 50 15 8 2 06.01.511 (FCO 5863-91) O ₂ +He 50 15 8 2 06.01.512 (FCO 5863-91) O ₂ +He 50 15 8 2 06.01.512 (FCO 5863-91) O ₂ +He 50 15 8 2 06.01.513 (FCO 5865-91) CH ₄ +He 50 15 8 2 06.01.514 (FCO 5865-91) O ₂ +He 70 15 10 2 06.01.515 (FCO 5867-91) N ₂ +He 70 15 10 2 06.01.516 (FCO 5868-91) A ₇ +He 70 15 10 2 06.01.517 (FCO 5868-91) O ₂ +He 70 15 10 2 06.01.518 (FCO 5869-91) O ₂ +He 70 15 10 2 06.01.519 (FCO 5870-91) CO+He 70 15 10 2 06.01.519 (FCO 5871-91) CH ₄ +He 70 15 10 2 06.01.519 (FCO 5873-91) O ₂ +He 70 15 10 2 06.01.520 (FCO 5873-91) N ₂ +He 100 25 15 2 06.01.522 (FCO 5873-91) N ₂ +He 100 25 15 2 06.01.523 (FCO 5873-91) O ₂ +He 100 25 15 2 06.01.524 (FCO 5878-91) CO+He 100 25 15 2 06.01.524 (FCO 5878-91) CO+He 100 25 15 2 06.01.525 (FCO 5873-91) CO+He 100 25 15 2 06.01.526 (FCO 5873-91) CO+He 100 25 15 2 06.01.526 (FCO 5873-91) CO+He 100 25 15 2 06.01.526 (FCO 5873-91) O ₂ +He 100 25 15 2 06.01.526 (FCO 5873-91) O ₂ +He 100 25 15 2 06.01.526 (FCO 5873-91) O ₂ +He 100 25 15 2 06.01.526 (FCO 5873-91) O ₂ +He 100 25 15 2 06.01.526 (FCO 5873-91) O ₂ +He 100 25 15 2 06.01.526 (FCO 5873-91) O ₂ +He 100 25 15 2 06.01.526 (FCO 5873-91) O ₂ +He 100 25 15 2 06.01.526 (FCO 5873-91) O ₂ +He 200 50 30 2 06.01.529 (FCO 5881-91) O ₂ +He 200 50 30 2 06.01.529 (FCO 5881-91) O ₂ +He 200 50 30 2 06.01.529 (FCO 5							
06.01.506 (TCO 5858-91) CO+He 20 5 3 2 06.01.507 (TCO 5859-91) CH ₄ +He 20 5 3 2 06.01.508 (TCO 5860-91) H ₂ +He 50 15 8 2 06.01.509 (TCO 5861-91) N ₂ +He 50 15 8 2 06.01.509 (TCO 5861-91) N ₂ +He 50 15 8 2 06.01.510 (TCO 5862-91) Ar+He 50 15 8 2 06.01.511 (TCO 5863-91) O ₂ +He 50 15 8 2 06.01.512 (TCO 5863-91) O ₂ +He 50 15 8 2 06.01.513 (TCO 5863-91) CO+He 50 15 8 2 06.01.514 (TCO 5865-91) CH ₄ +He 50 15 8 2 06.01.515 (TCO 5866-91) N ₂ +He 70 15 10 2 06.01.515 (TCO 5866-91) N ₂ +He 70 15 10 2 06.01.516 (TCO 5869-91) O ₂ +He 70 15 10 2 06.01.517 (TCO 5869-91) O ₂ +He 70 15 10 2 06.01.518 (TCO 5869-91) O ₂ +He 70 15 10 2 06.01.519 (TCO 5871-91) CO+He 70 15 10 2 06.01.519 (TCO 5871-91) CH ₄ +He 70 15 10 2 06.01.519 (TCO 5871-91) O ₂ +He 70 15 10 2 06.01.520 (TCO 5873-91) N ₂ +He 100 25 15 2 06.01.521 (TCO 5873-91) O ₂ +He 100 25 15 2 06.01.522 (TCO 5873-91) O ₂ +He 100 25 15 2 06.01.524 (TCO 5878-91) O ₂ +He 100 25 15 2 06.01.524 (TCO 5878-91) O ₂ +He 100 25 15 2 06.01.525 (TCO 5878-91) O ₂ +He 100 25 15 2 06.01.526 (TCO 5878-91) O ₂ +He 100 25 15 2 06.01.526 (TCO 5878-91) O ₂ +He 100 25 15 2 06.01.526 (TCO 5878-91) O ₂ +He 100 25 15 2 06.01.526 (TCO 5878-91) O ₂ +He 100 25 15 2 06.01.526 (TCO 5878-91) O ₂ +He 100 25 15 2 06.01.526 (TCO 5878-91) O ₂ +He 100 25 15 2 06.01.526 (TCO 5878-91) O ₂ +He 100 25 15 2 06.01.526 (TCO 5878-91) O ₂ +He 200 50 30 2 06.01.529 (TCO 5881-91) O ₂ +He 200 50 30 2 06.01.529 (TCO 5881-91) O ₂ +He 200 50 30 2 06.01.529 (TCO 5881-91) O ₂ +He 200 50 30 2 06.01.529 (TCO 5881-91) O ₂ +He 200 50 30 2 06.01.529 (TCO 5881-91) O ₂ +He 200 50 30 2 06.01.5							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				-			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
06.01.509 (FCO 5861-91) N ₂ +He 50 15 8 2 06.01.510 (FCO 5862-91) Ar+He 50 15 8 2 06.01.511 (FCO 5863-91) O ₂ +He 50 15 8 2 06.01.512 (FCO 5864-91) CO+He 50 15 8 2 06.01.513 (FCO 5865-91) CH ₄ +He 50 15 8 2 06.01.513 (FCO 5865-91) CH ₄ +He 50 15 8 2 06.01.514 (FCO 5866-91) N ₂ +He 70 15 10 2 06.01.515 (FCO 5866-91) N ₂ +He 70 15 10 2 06.01.516 (FCO 5866-91) N ₂ +He 70 15 10 2 06.01.516 (FCO 5868-91) O ₂ +He 70 15 10 2 06.01.516 (FCO 5869-91) O ₂ +He 70 15 10 2 06.01.518 (FCO 5870-91) CO+He 70 15 10 2 06.01.519 (FCO 5871-91) CH ₄ +He 70 15 10 2 06.01.520 (FCO 5872-91) H ₂ +He 100 25 15 2 06.01.522 (FCO 5873-91) N ₂ +He 100 25 15 2 06.01.522 (FCO 5874-91) Ar+He 100 25 15 2 06.01.522 (FCO 5876-91) CO+He 100 25 15 2 06.01.522 (FCO 5878-91) O ₂ +He 100 25 15 2 06.01.522 (FCO 5878-91) CO+He 100 25 15 2 06.01.522 (FCO 5878-91) CO+He 100 25 15 2 06.01.522 (FCO 5878-91) CO+He 100 25 15 2 06.01.525 (FCO 5878-91) CO+He 100 25 15 2 06.01.526 (FCO 5878-91) CO+He 100 25 15 2 06.01.526 (FCO 5878-91) CO+He 100 25 15 2 06.01.526 (FCO 5878-91) N ₂ +He 200 50 30 2 06.01.528 (FCO 5889-91) N ₂ +He 200 50 30 2 06.01.529 (FCO 5889-91) N ₂ +He 200 50 30 2 06.01.529 (FCO 5889-91) N ₂ +He 200 50 30 2 06.01.529 (FCO 5881-91) O ₂ +He 200 50 30 2 06.01.529 (FCO 5881-91) O ₂ +He 200 50 30 2 06.01.529 (FCO 5881-91) O ₂ +He 200 50 30 2 06.01.529 (FCO 5881-91) O ₂ +He 200 50 30 2 06.01.529 (FCO 5881-91) O ₂ +He 200 50 30 2 06.01.529 (FCO 5881-91) O ₂ +He 200 50 30 2 06.01.529 (FCO 5881-91) O ₂ +He 200 50 30 2 06.01.529 (FCO 5881-91) O ₂ +He 200 50 30 2 06.01.529 (FCO 5881-91) O ₂ +He 200 50 30 2 06.01.529				_			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					_		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					_		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						-	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						· ·	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	06.01.518 (ΓCO 5870-91)						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							2
06.01.528 (ΓCO 5880-91) Ar+He 200 50 30 2 06.01.529 (ΓCO 5881-91) O ₂ +He 200 50 30 2				200	50	30	2
$O6.01.529 (\Gamma CO 5881-91) O_2+He$ 200 50 30 2	06.01.527 (ΓCO 5879-91)	N ₂ +He		200	50		2
06.01.529 (ΓCO 5881-91) O2+He 200 50 30 2 06.01.530 (ΓCO 5882-91) CO+He 200 50 30 2		Ar+He		200	50		2
06.01.530 (ΓCO 5882-91) CO+He 200 50 30 2	06.01.529 (ΓCO 5881-91)	O ₂ +He		200	50	30	2
	06.01.530 (ΓCO 5882-91)	СО+Не			50	30	2
06.01.531 (ΓCO 5883-91) CH ₄ +He 200 50 30 2	06.01.531 (ΓCO 5883-91)	CH ₄ +He		200	50	30	2
06.01.532 (CCO 5884-91) H ₂ 25 7 4 2	06.01.532 (ΓCO 5884-91)	H ₂		25	7	4	2
N_2 10 3 1,5	,	N_2				1,5	
Ar 20 5 3		Ar		20	5		
Ne 60 15 9		Ne		60	15	9	
Не ост.		Не		ост.			

	, , , , , , , , , , , , , , , , , , ,					
T	TC 4		ые значения	Пределы	Пределы	5
Регистрационный	Компонентный		олярной) доли	допускаемого	допускаемой	вdε
номер	состав		о компонента	отклонения	погрешности	Разряд
		%	млн ⁻¹ (ppm)	±Д	±Δ	L
06.01.533 (ΓCO 5885-91)	H_2		5,0	2,5	0,8	2
	N_2		40	10	6	
	Ar		1,0	0,3	0,2	
	Ne		15	5	2,5	
06.01.524 (EGO.5006.01)	Не		OCT.	2	1.5	<u> </u>
06.01.534 (ΓCO 5886-91)	H_2		10	3	1,5	2
	N_2		20	5	3	
	Ar		5,0	2,5	0,8	
	Ne		40	10	6	
0(01 525 (ECO 5007 01)	Не		OCT.	0.2	0.2	-
06.01.535 (ΓCO 5887-91)	H_2		1,0	0,3	0,2	2
	N_2		5,0	2,5	0,8	
	Ar		10	3	1,5	
	Ne		90	25	14	
06.01.536 (ΓCO 5888-91)	He H ₂		OCT.	0.2	0.2	2
00.01.330 (1 CO 3888-91)			1,0	0,3	0,2	4
	N ₂ Ar		1,0	0,3	0,2 0,2	
	Ar Ne		1,0 15	0,3	2,5	
	He			3	2,3	
06.01.537 (ΓCO 5889-91)	H ₂		ост. 10	3	1,5	2
00.01.337 (1 CO 3889-91)	N_2		10	3	1,5	
	Ar		10	3	1,5	
	Ne		15	5	2,5	
	He		OCT.	3	2,3	
06.01.538 (ΓCO 5890-91)	SO ₂ +N ₂	1,13-2,25	001.	0,11	0,07	2
06.01.539 (ΓCO 5891-91)	SO_2+N_2 SO_2+N_2	0,56-1,13		0,06	0,03	2
06.01.540 (ΓCO 5892-91)	SO_2+N_2 SO_2+N_2	0,38-0,75		0,04	0,02	2
06.01.541 (ΓCO 5893-91)	SO_2+N_2 SO_2+N_2	0,38-0,73		0,02	0,011	1
06.01.542 (ΓCO 5894-91)	SO_2+N_2 SO_2+N_2	0,120-0,188		0,009	0,011	1
06.01.543 (ΓCO 5895-91)	$C_3H_8+N_2$	0,150-0,300		0,009	0,005	2
06.01.544 (ΓCO 5896-91)		0,350-0,475		0,025	0,015	1
	$C_3H_8+N_2$					+
06.01.545 (ΓCO 5897-91)	C ₃ H ₈ +N ₂	0,100-0,200	450 1000	0,010	0,004	1
06.01.546 (ΓCO 5898-91)	$C_6H_{14}+N_2$		450-1000	100	20 30	1
06.01.547 (ΓCO 5899-91)	C ₆ H ₁₄ +N ₂	0.065.0.150	200-600	50		2
06.01.548 (ΓCO 5900-91)	C ₆ H ₁₄ +N ₂	0,065-0,150		0,008	0,003	1
06.01.549 (ΓCO 5901-91)	C ₆ H ₁₄ +N ₂	0,160-0,250	200.000	0,010	0,005	1
06.01.550 (ΓCO 5902-91)	С ₆ Н ₁₄ +воздух	0.065.0.150	200-600	50	30	2
06.01.551 (ΓCO 5903-91)	С ₆ Н ₁₄ +воздух	0,065-0,150		0,008	0,003	1
06.01.552 (ΓCO 5904-91)	С ₆ Н ₁₄ +воздух	0,160-0,250		0,010	0,005	1
06.01.553 (ΓCO 5905-91)	и-С ₄ Н ₁₀ +воздух	0,30-0,60		0,10	0,03	2
06.01.554 (ΓCO 5906-91)	и-С ₄ Н ₁₀ +воздух	1,20-1,50		0,15	0,03	1
06.01.555 (ΓCO 5907-91)	O ₂ +Ar	81,0-95,0	46.5	1,0	0,10	1
06.01.556 (ΓCO 6172-91)	H ₂ S+N ₂		10,0	1,0	0,5	1
06.01.557 (ΓCO 6173-91)	H ₂ S+N ₂		18,0	2,0	0,9	1
06.01.558 (ΓCO 6174-91)	СF ₂ Сl ₂ +воздух		160	40	10	2
06.01.559 (ΓCO 6175-91)	СF ₂ Сl ₂ +воздух	0,060		0,010	0,004	2
06.01.560 (ΓCO 6176-91)	CF ₂ Cl ₂ +воздух	0,180		0,030	0,012	2
06.01.561 (ΓCO 6177-91)	CHClF ₂ +воздух		220	60	20	2
06.01.562 (ΓCO 6178-91)	CHClF ₂ +воздух	0,083		0,014	0,006	2
06.01.563 (ΓCO 6179-91)	CHClF ₂ +воздух	0,250		0,040	0,017	2
06.01.564 (ΓCO 6180-91)	CO ₂ +N ₂		100	10	6	2
06.01.565 (ΓCO 6181-91)	CO ₂ +N ₂		140-190	10	6	1
06.01.566 (ΓCO 6182-91)	CO ₂ +N ₂		250	25	15	2
06.01.567 (ΓCO 6183-91)	CO ₂ +N ₂		350-475	25	15	1
06.01.568 (ΓCO 6184-91)	CO ₂ +N ₂	0,050		0,005	0,003	2
06.01.569 (ΓCO 6185-91)	CO ₂ +N ₂	0,070-0,095		0,005	0,003	1
	1	, ,		· · · · · ·		

190005, Санкт-Петербург, Московский пр., 19 5-11-45 E-mail;info

					T	
			ые значения	Пределы	Пределы	Ħ
Регистрационный	Компонентный		олярной) доли	допускаемого	допускаемой	кds
номер	состав		о компонента	отклонения	погрешности	Разряд
		%	млн ⁻¹ (ppm)	±Д	±Δ	
06.01.570 (ΓCO 6186-91)	CO_2+N_2	0,100-0,190		0,010	0,004	1
06.01.571 (ΓCO 6187-91)	CO_2+N_2	0,250-0,475		0,025	0,010	1
06.01.572 (ΓCO 6188-91)	SO ₂ +N ₂		94-188	22	11	2
06.01.573 (ΓCO 6189-91)	SO_2+N_2		263-376	22	11	1
06.01.574 (ΓCO 6190-91)	SO_2+N_2		376	40	22	2
06.01.575 (ΓCO 6191-91)	SO_2+N_2	0,071		0,004	0,002	1
06.01.576 (ΓCO 6192-91)	NO+N ₂	0,040-0,056		0,004	0,003	2
06.01.577 (ΓCO 6193-91)	NO+N ₂	0,065-0,080		0,005	0,003	1
06.01.578 (ΓCO 6194-91)	NO+N ₂	0,079		0,008	0,006	2
06.01.579 (ΓCO 6195-91)	NO+N ₂	0,151		0,008	0,006	1
06.01.580 (ΓCO 6292-91)	CO+N ₂	1,00-3,70		0,25	0,10	2
06.01.581 (ΓCO 6293-91)	CO+N ₂	3,80-4,50		0,25	0,10	1
06.01.582 (ΓCO 6294-91)	CO+N ₂	7,5		0,5	0,15	1
06.01.583 (ΓCO 6295-91)	CO+N ₂	9,5		0,5	0,20	1
06.01.584 (ΓCO 6331-92)	Kr+N ₂	10,0		0,5	0,2	1
06.01.585 (ΓCO 6332-92)	Kr+N ₂	15,0		0,6	0,3	1
06.01.586 (ΓCO 6333-92)	Kr+N ₂	20,0		0,7	0,4	1
06.01.587 (ΓCO 6334-92)	Kr+Xe	5,0		0,3	0,1	1
06.01.588 (ΓCO 6335-92)	Kr+Xe	10,0		0,5	0,2	1
06.01.589 (ΓCO 6336-92)	Kr+Xe	15,0		0,6	0,3	1
06.01.590 (ΓCO 6337-92)	Ar+He	10,0		0,5	0,2	1
06.01.591 (ΓCO 6338-92)	Ar+He	20,0		0,7	0,4	1
06.01.592 (ΓCO 6339-92)	Ar+He	30,0		0,9	0,6	1
06.01.593 (ΓCO 6340-92)	Kr+He	10,0		0,5	0,2	1
06.01.594 (ΓCO 6341-92)	Kr+He	20,0		0,7	0,4	1
06.01.595 (ΓCO 6342-92)	Kr+He	30,0		0,9	0,6	1
06.01.596 (ΓCO 6343-92)	С ₂ Н ₄ +воздух	0,20-0,59		0,06	0,03	2
06.01.597 (ΓCO 6344-92)	С ₂ Н ₄ +воздух	0,60-1,50		0,12	0,06	2
06.01.598 (ΓCO 6400-92)	$C_3H_8+H_2$	2,5		0,5	0,03	1
06.01.599 (ΓCO 6401-92)	$H-C_4H_{10}+H_2$	3,00		0,5	0,03	1
06.01.600 (ΓCO 6402-92)	и- $C_4H_{10}+H_2$	3,00		0,5	0,08	2
06.01.601 (ΓCO 6403-92)	$C_2H_6+H_2$	5,0		1,0	0,15	2
06.01.602 (ΓCO 6404-92)	CH ₄ +H ₂	6,0		1,0	0,06	1
06.01.603 (ΓCO 6405-92)	SO_2+N_2	0,094		0,010	0,006	2
06.01.604 (ΓCO 7073-93)	C ₃ H ₈ +He	0,19-0,33		0,05	0,02	2
06.01.605 (ΓCO 7074-93)	C ₃ H ₈ +He	1,50-1,70		0,30	0,20	2
06.01.606 (ΓCO 7075-93)	CBrF ₃ +воздух		24	5	1,6	2
06.01.607 (ΓCO 7076-93)	CBrF ₃ +воздух		57	8	4	2
06.01.608 (ΓCO 7077-93)	CBrF ₃ +N ₂		24	5	1,6	2
06.01.609 (ΓCO 7078-93)	CBrF ₃ +N ₂		57	8	4	2
06.01.610 (ΓCO 7913-2001)	$C_3H_8+N_2$		248	25	9	2
06.01.611 (ΓCO 7914-2001)	$C_3H_8+N_2$		123	14	9	2
06.01.612 (ΓCO 7915-2001)	$C_6H_{14}+N_2$		127	13	5	2
06.01.613 (ΓCO 7916-2001)	$C_6H_{14} + N_2$		63	7	5	2
06.01.614 (ΓCO 7917-2001)	O ₂ +Ar	0,060		0,007	0,007	2
06.01.615 (ΓCO 7918-2001)	O ₂ +Ar	0,10		0,010	0,007	2
06.01.616 (ΓCO 7919-2001)	O ₂ +Ar	0,21		0,010	0,01	2
06.01.617 (ΓCO 7920-2001)	NH ₃ +воздух	0,250	101	0,041	0,025	2
06.01.618 (ΓCO 7921-2001)	NH ₃ +воздух	0.071	191	31	19	2
06.01.619 (ΓCO 7922-2001)	NH ₃ +воздух	0,071		0,004	0,003	2
06.01.620 (ΓCO 7923-2001)	NH ₃ +воздух	0,212		0,011	0,008	2
06.01.621 (ΓCO 7924-2001)	NH ₃ +воздух	0,34		0,03	0,014	2
06.01.622 (ΓCO 7925-2001)	NH ₃ +воздух	1,06		0,14	0,04	1
06.01.623 (ΓCO 7926-2001)	NH ₃ +воздух	1,34		0,14	0,05	1

Регистрационный	Компонентный	объемной (ме	ые значения олярной) доли	Пределы допускаемого	Пределы допускаемой	Разряд
номер	состав	определяемо	го компонента млн ⁻¹ (ppm)	отклонения	погрешности $\pm \Delta$	Pas
06.01.624	O ₂ +N ₂	70	млн (ррпі) 25-45	±Д 5	2	2
06.01.625	O_2+N_2		80-120	10	5	1
06.01.626	СО+воздух	0,10-0,20	00-120	0,02	0,002	0
06.01.627	СО+воздух	0,50-1,00		0,05	0,002	1
06.01.628	СО+воздух	2,0-5,0		0,03	0,05	1
06.01.629	C_4H_{10} +воздух	0,25-0,70		0,05	0,02	1
06.01.630	С ₄ Н ₁₀ +воздух С ₄ Н ₈ +воздух	0,23-0,70	50-100	10	5	2
06.01.631	C_4H_8 +воздух C_4H_8 +воздух		270	30	5	1
06.01.632	С ₅ H ₁₂ +воздух	0,16-0,40	270	0,04	0,02	2
06.01.633	С ₅ H ₁₂ +воздух	0,65		0,06	0,03	2
06.01.634	$C_3H_{12} + BO3AyA$ $C_2H_4 + N_2$	4,5		0,5	0,1	1
06.01.635	$C_2H_4+N_2$	8,0		0,5	0,15	1
06.01.636	$C_2H_2+N_2$	7,5		0,5	0,2	2
06.01.637	$C_2H_2 + N_2$ $C_2H_2 + N_2$	13,5		0,8	0,4	2
06.01.638	C2112+1N2 CO+Ar	13,3	5-20	2	0,4	1
06.01.639	CO+Ar		20-50	5	0,5	1
06.01.640	SO ₂ +N ₂		10-20	2	0,3	1
06.01.641	SO ₂ +N ₂		20-100	15 %, отн.	2,0	1
06.01.642	i-C ₅ H ₁₂	0,50-1,10	20-100	15 %, отн.	0.015	1
00.01.042	n-C ₅ H ₁₂	5,0-6,2		15 %, отн.	0,15	1
	n-C ₆ H ₁₄	0,50-1,10		15 %, отн.	0,015	
	Ar	ост.		15 70, 0111.	0,015	
06.01.643	H ₂	0,40-6,00		15 %, отн.	0,010	1
00.01.0.13	O_2	0,10-0,30		15 %, отн.	0,003	1
	N_2	0,20-0,60		15 %, отн.	0,006	
	CH ₄	5,0-15,0		15 %, отн.	0,020	
	C_2H_6	20-35		15 %, отн.	0,6	
	C_3H_8	20-30		15 %, отн.	0,6	
	i-C ₄ H ₁₀	0,50-1,00		15 %, отн.	0,010	
	$n-C_4H_{10}$	10-15		15 %, отн.	0,03	
	Ar	OCT.				
06.01.647	H_2		200-600	20	6	1
	O_2		800-2000	80	12	
	N_2		1000-6000	100	30	
	CO		200-600	20	6	
	CO_2		800-2000	80	12	
	CH ₄		50-100	5	2	
	C ₂ H ₂		40-90	4	2	
	C ₂ H ₄		40-90	4	2	
	C ₂ H ₆ Ar		40-90	4	2	
06.01.648	$C_3H_8+N_2$	0,5-6,0	ост.	10 %, отн.	4 %, отн.	1
06.01.649	CH ₄	0,020		0,005	0,002	2
00.01.049	C ₂ H ₆	0,020		0,005	0,002	
	C ₃ H ₈	0,020		0,005	0,002	
	C ₄ H ₁₀	0,020		0,005	0,002	
	He	ост.		,,,,,,	*,**-	
06.01.650	CH ₄	0,50		0,06	0,03	2
	C_2H_6	0,50		0,06	0,03	
	C_3H_8	0,50		0,06	0,03	
	C_4H_{10}	0,50		0,06	0,03	
	Не	ост.				
06.01.651	CH ₄	1,00		0,10	0,05	2
	C_2H_6	1,00		0,10	0,05	
	C_3H_8	1,00		0,10	0,05	
	C_4H_{10}	1,00		0,10	0,05	
	Не	ост.		<u> </u>		<u> </u>

190005, Санкт-Петербург, Московский пр., 19

Регистрационный номер	Компонентный состав	объемной (мо	ые значения олярной) доли го компонента млн ⁻¹ (ppm)	Пределы допускаемого отклонения ±Д	Пределы допускаемой погрешности $\pm \Delta$	Разряд
06.01.652	$\begin{array}{c} H_2 \\ O_2 \\ N_2 \\ CO_2 \\ He \end{array}$	0,020 0,020 0,020 0,020 0,020 0ct.	(pp)	0,005 0,005 0,005 0,005 0,005	0,002 0,002 0,002 0,002 0,002	2
06.01.653	$\begin{array}{c} H_2 \\ O_2 \\ N_2 \\ CO_2 \\ He \end{array}$	1,00 0,70 1,00 0,20 oct.		0,10 0,07 0,10 0,05	0,05 0,05 0,05 0,05 0,02	2
06.01.654	H ₂ O ₂ N ₂ CO ₂ He	5,0 1,50 5,0 0,50 oct.		0,5 0,15 0,5 0,05	0,25 0,007 0,25 0,02	2
06.01.657	Ne O ₂ N ₂ He		800 800 800 oct.	80 80 80	30 30 30	1
06.01.658	Ne O ₂ N ₂ He		25 25 25 0ct.	5 5 5	1,0 1,0 1,0	1
06.01.659	NO SO ₂ N ₂		757 176 ост.	100 25	30 8	2
06.01.660	CO NO SO ₂ N ₂		200-700 100-400 50-300 oct.	20 %, отн. 20 %, отн. 20 %, отн.	6 %, отн. 6 %, отн. 6 %, отн.	1
06.01.661	CO NO SO ₂ N ₂		700-1500 100-400 50-300 oct.	70 10 5	7 2 1	1
06.01.662 (ΓCO 8376-2003)	CO CO ₂ C ₃ H ₈ N ₂	0,5-1,0 1,0-7,0 4,0-16,0 oct.	100-2500	10 %, отн. 10 %, отн. 10 %, отн. 20 %, отн.	0,01 0,01 0,04 2	1
06.01.663 (ΓCO 8377-2003)	CO CO ₂ O ₂ C ₃ H ₈ N ₂	0,3-1,0 1,0-5,0 4,0-16,0 0,50-1,0 1,0-21,0	100-2000	10 %, отн. 10 %, отн. 10 %, отн. 10 %, отн. 10 %, отн. 20 %, отн.	0,01 0,01 0,04 0,01 0,01 2	1
06.01.664 (ΓCO 8364-2003) 06.01.665 (ΓCO 8366-2003)	C ₂ H ₅ OH+N ₂ C ₂ H ₅ OH+N ₂		35-100 100-900	10 %, отн. 10 %, отн.	2 0,02·X	1

		Номинальны		Пределы	Пределы	Д
Регистрационный	Компонентный	объемной (моляр		допускаемого	допускаемой по-	кdғ
номер	состав	ределяемого н		отклонения	грешности	Разряд
0.6.04.6666 (17.00.00.00.00.00.00.00.00.00.00.00.00.00	CYY	%	млн ⁻¹ (ppm)	±Д	±Δ	
06.01.666 (ΓCO 8378-2003)		0,0020-0,10		20 %, отн.	$\Delta = 0.049 \cdot X + 0.0001$	2
	C ₂ H ₆	0,0020-0,10		20 %, отн.	$\Delta = 0.049 \cdot X + 0.0001$	
	C ₂ H ₄	0,0020-0,10		20 %, отн.	$\Delta = 0.049 \cdot X + 0.0001$	
	C_2H_2	0,0020-0,10		20 %, отн.	$\Delta = 0.049 \cdot X + 0.0001$	
	H ₂	0,010-1,0		10 %, отн.	$\Delta = 0.05 \cdot X + 0.0005$	
	CO	0,010-1,0		10 %, отн.	$\Delta = 0.05 \cdot X + 0.0005$	
	CO_2	0,010-0,10		10 %, отн.	$\Delta = 0.044 \cdot X + 0.0006$	
	O_2	0,010-1,0		10 %, отн.	$\Delta = 0.05 \cdot X + 0.0005$	
	N_2	0,010-1,0		10 %, отн.	$\Delta = 0.05 \cdot X + 0.0005$	
06.01.667.650.0270.2002	He	OCT.		20.0/	0.040 37+0.0001	-
06.01.667 (ΓCO 8379-2003)		0,0020-0,10		20 %, отн.	$\Delta = 0.049 \cdot X + 0.0001$	2
	C ₂ H ₆	0,0020-0,10		20 %, отн.	$\Delta = 0.049 \cdot X + 0.0001$	
	C ₂ H ₄	0,0020-0,10		20 %, отн.	$\Delta = 0.049 \cdot X + 0.0001$	
	C_2H_2	0,0020-0,10		20 %, отн.	$\Delta = 0.049 \cdot X + 0.0001$	
	H ₂	0,010-1,0		10 %, отн.	$\Delta = 0.05 \cdot X + 0.0005$	
	CO	0,010-1,0		10 %, отн.	$\Delta = 0.05 \cdot X + 0.0005$	
	CO_2	0,010-0,10 0,010-1,0		10 %, отн.	$\Delta = 0.044 \cdot X + 0.0006$	
	O_2	0,010-1,0 0,010-1,0		10 %, отн. 10 %, отн.	$\Delta = 0.05 \cdot X + 0.0005$ $\Delta = 0.05 \cdot X + 0.0005$	
	N ₂			10 %, OTH.	Δ= 0,03.74+0,0003	
06.01.668 (ΓCO 8365-2003)	Ar C ₂ H ₅ OH+N ₂	ост.	50-100	10 %, отн.	4	2
06.01.669 (ΓCO 8367-2003)			100-900	10 %, отн	0,04·X	2
06.01.670 (ΓCO 8372-2003)			1,0-19	20 %, отн	10 %, OTH.	2
06.01.671 (ΓCO 8373-2003)			20-100	10 %, отн	7 % ,отн.	2
06.01.672 (ΓCO 8374-2003)	NO+N ₂		1,0-20	20 %, отн	10 %, отн.	2
06.01.672 (ΓCO 8375-2003)			21-100.	20 %, отн	7%, отн.	2
06.01.674 (ΓCO 8370-2003)			1,0-19	20 %, отн	10 %, отн.	2
06.01.675 (ΓCO 8371-2003)	NO ₂ +N ₂		20-100	10 %, отн	7 %, отн.	2
06.01.676 (ΓCO 8368-2003)	H ₂ S+N ₂		1,0-20	20 %, отн	10 %, отн.	2
06.01.677 (ΓCO 8369-2003)			21-100	20 %, отн	7 %, отн.	2
06.01.678	Kr+He		5	1,0	0,3	2
06.01.679	Kr+He		10	2,0	0,5	2
06.01.680	O ₂		5	1,0	0,5	2
00.01.080	N_2		5	1,0	0,5	
	CO_2		5	1,0	0,5	
	CH ₄		5	1,0	0,5	
	Kr		5	1,0	0,5	
	Xe		ост.	1,0	0,5	
06.01.681	O ₂		1	0,3	0,1	2
00.01.001	N_2		1	0,3	0,1	1 -
	CO_2		1	0,3	0,1	
	CH ₄		1	0,3	0,1	
	He		ост.	0,5	0,1	
06.01.682	O_2		5	1,0	0,3	2
	N_2		5	1,0	0,3	_
	CO_2		5	1,0	0,3	
	CH ₄		5	1,0	0,3	
	Не		ост.	,	,	
06.01.683	O_2		10	2,0	0,5	2
	N_2		10	2,0	0,5	
	CO_2		10	2,0	0,5	
	CH ₄		10	2,0	0,5	
	Не		ост.	ĺ	<u> </u>	
06.01.686	NH ₃ +N ₂	0,001-5,0		20 %, отн.	4 %, отн.	1
06.01.687 (ΓCO 8393-2003)		99,8		-	0,04	0
	C ₃ H ₈	0,10		10 %, отн.	0,003	
	CO_2	0,030		10 %, отн.	0,0010	1
	CO2	0,050				

190005, Санкт-Петербург, Московский пр., 19

		Номинальны	е значения	Пределы	Пределы	-
Регистрационный	Компонентный	объемной (моляр	эной) доли оп-	допускаемого	допускаемой по-	Разряд
номер	состав	ределяемого н	компонента	отклонения	грешности	233
		%	млн ⁻¹ (ppm)	±Д	$\pm\Delta$	
06.01.688 (ΓCO 8394-2003)	CH ₄	99,8		-	0,04	0
	C_3H_8	0,10		10 %, отн.	0,003	
	N_2	0,10		10 %, отн.	0,004	
06.01.689 (ΓCO 8395-2003)	$C_3H_8+N_2$		50	10 %, отн.	5	1
06.01.690 (ΓCO 8396-2003)	$C_2H_4+N_2$	2,5-4,9		0,10	0,015	0
06.01.691 (ΓCO 8397-2003)	$C_2H_4+N_2$	5,0-9,9		2 %, отн.	0,03	0
06.01.692 (ΓCO 8398-2003)	$C_2H_4+N_2$	2,5-4,9		2 %, отн.	0,03	1
06.01.693 (ΓCO 8399-2003)	$C_2H_4+N_2$	5,0-9,9		2 %, отн.	0,06	1
06.01.694	H ₂ S+He	0,5-9,9		10 %, отн.	3 %, отн.	2
06.01.696	C ₃ H ₈	1,0-3,0		20 %, отн.	0,05	2
	i-C ₄ H ₁₀	1,0-3,0		20 %, отн.	0,05	
	n-C ₄ H ₁₀	5,0-10		20 %, отн.	0,25	
	Не	ост.				
06.01.697	N ₂	1,0-2,0		20 %, отн.	0,05	2
	CO_2	0,5-3,0		20 %, отн.	0,025	
	CH ₄	30-40		20 %, отн.	1,5	
	C_2H_6	10-20		20 %, отн.	0,5	
	C_3H_8	10-20		20 %, отн.	0,5	
	i-C ₄ H ₁₀	2,0-5,0		20 %, отн.	0,05	
	n-C ₄ H ₁₀	5,0-10		20 %, отн.	0,1	
-	Не	OCT.				
06.01.698 (ΓCO 8508-2004)		0,50-0,95		10 %, отн.	0,02	1
06.01.699 (ΓCO 8509-2004)		1,50-2,85		10 %, отн.	0,05	1
06.01.700 (ΓCO 8506-2004)		0,50-0,95		10 %, отн.	0,02	1
06.01.701 (ΓCO 8507-2004)		1,50-2,85		10 %, отн.	0,05	1
06.01.703	He	0,010-0,05		10 %, отн.	4 %, отн.	1
	H_2	0,010-0,05		10 %, отн.	4 %, отн.	
06.01.704	Ar	ост.		1.7.0/	Z 0/	1 2
06.01.704	O_2	1,7-7,0		15 %, OTH.	5 %, OTH.	2
	CO	0,6-2,3		15 %, отн. 15 %, отн.	5 %, отн. 5 %, отн.	
	N ₂ He	1,5-6,0 ост.		15 %, OTH.	3 70, OTH.	
06.01.705	CF ₄	1,5-6,0		15 %, отн.	5 %, отн.	2
00.01.703	CO_2	0,15-0,6		15 %, отн.	5 %, OTH. 5 %, OTH.	
	N_2O	0,15-0,6		15 %, отн.	5 %, OTH. 5 %, OTH.	
	SF ₆	0,3-1,2		15 %, отн.	5 %, отн. 5 %, отн.	
	He	ост.		15 70, 0111.	5 70, 0111.	
06.01.715 (ΓCO 8531-2004)			1,0-9,9	30 %, отн.	15 %, отн.	2
22.01., 12 (1 20 0001 2004)	CH ₃ SH		1,0-9,9	30 %, отн.	15 %, отн.	~
	C ₂ H ₅ SH		1,0-9,9	30 %, отн.	15 %, отн.	
	He		ост.		, , , , , , , , , , , , , , , , , ,	
06.01.716 (ΓCO 8532-2004)			10-500	15 %, отн.	7 %, отн.	2
, ,	CH ₃ SH		10-500	15 %, отн.	7 %, отн.	
	C ₂ H ₅ SH		10-500	15 %, отн.	7 %, отн.	
	Не		ост.	,	,	
06.01.717	NH ₃ +воздух	0,0010-5,0		15 %, отн.	4 %, отн.	1
06.01.718	H ₂ +N ₂	0,10-0,90		10 %, отн.	2 %, отн.	1
06.01.719	CO	0,0010-0,050		20 %, отн.	10 %, отн.	2
	CH ₄	0,0010-0,050		20 %, отн.	10 %, отн.	
	H_2	0,0010-0,050		20 %, отн.	10 %, отн.	
	воздух	ост.			·	
06.01.720	H ₂ S+N ₂	0,0010-3,0		20 %, отн.	4 %, отн.	1
06.01.721	H ₂ S+He	0,0010-3,0		20 %, отн.	4 %, отн.	1
06.01.722	H ₂ S+ воздух	0,0010 -2,0		20 %, отн.	4 %, отн.	1
	· ·	-	· · · · · · · · · · · · · · · · · · ·	<u> </u>		

190005, Санкт-Петербург, Московский пр., 19 тел: (812) 315-11-45

E-mail:info@vniim.ru факс: (812) 327-97-76 http://www.vniim.ru

		Номинальные		Пределы	Пределы	Д
Регистрационный	Компонентный	объемной (моляр	*	допускаемого	допускаемой по-	кdя
номер	состав	ределяемого к		отклонения	грешности	Разряд
06.01.702	CII	%	млн ⁻¹ (ppm)	±Д	±Δ	-
06.01.723	CH ₄	0,0005-0,010		20 %, отн.	7 %, OTH.	2
	C ₃ H ₈	0,0005-0,010		20 %, отн. 20 %, отн.	7 %, отн.	
	CO	0,0005-0,010		20 %, OTH.	7 %, отн.	
06.01.724	воздух	OCT.		10.0/	5 0/ omy	1
06.01.724 06.01.725	H ₂ +O ₂	0,10-0,25		10 %, отн. 10 %, отн.	5 %, OTH.	1
00.01.723	CH ₄	0,20-7,0		10 %, отн. 10 %, отн.	4 %, отн. 4 %, отн.	1
	H ₂ CO	0,20-1,5 0,2-5,0		10 %, отн.	4 %, OTH. 4 %, OTH.	
	CO_2	5,0-30		10 %, отн.	4 %, OTH. 4 %, OTH.	
	O_2	1,0-4		20 %, отн.	4 %, OTH. 4 %, OTH.	
	N ₂	ост.		20 /0, OTH.	4 /0, OIH.	
06.01.726	CH ₄	0,050-0,50		10 %, отн.	4 %, отн.	1
00.01.720	H ₂	1,0-8,0		10 %, OTH. 10 %, OTH.	4 %, oth. 4 %, oth.	1
	C_2H_6	0,05-0,50		10 %, отн.	4 %, OTH. 4 %, OTH.	
	CO	0,050-1,0		10 %, OTH. 10 %, OTH.	4 %, OTH.	
	CO_2	0,050-1,0		10 %, OTH. 10 %, OTH.	4 %, OTH.	
	O_2	1,0-4		20 %, oth.	4 %, oth.	
	N_2	0СТ.		20 /0, OTH.	4 /0, OIH.	
06.01.727	O_2	0,050-2,0		10 %, отн.	4 %, отн.	1
00.01.727	N_2	0,050-2,0		10 %, отн.	4 %, oth.	1
	Ar (He)	ост.		10 /0, 0111.	4 /0, 0111.	
06.01.728	SO ₂	0,0050-0,10		20 %, отн.	4 %, отн.	1
00.01.720	NO NO	0,0050-0,10		20 %, oth.	4 %, отн. 4 %, отн.	1
	CO	0,0050-0,10		20 %, oth.	4 %, oth.	
	N ₂	ост.		20 70, 0111.	4 /0, 0111.	
06.01.729	CH ₄	1,0-10		10 %, отн.	4 %, отн.	1
00.01.72)	H ₂	0,50-5,0		10 %, отн.	4 %, oth.	1
	CO	1,0-10		10 %, отн.	4 %, oth.	
	CO_2	1,0-10		10 %, отн.	4 %, oth.	
	N_2	ост.		10 /0, 0111.	4 /0, 0111.	
06.01.730	H ₂	0,20-1,0		10 %, отн.	5 %, отн.	2
00.01.750	CO	1,0-5,0		10 %, отн.	5 %, отн.	_
	CO_2	5,0-15		10 %, отн.	5 %, отн.	
	N_2	5,0-15		10 %, отн.	5 %, отн.	
	He	ост.		, .,	· / · / · · · · · ·	
06.01.731	CH ₄	0,010-1,0		10 %, отн.	4 %, отн.	1
	H_2	0,10-1,0		10 %, отн.	4 %, отн.	
	O_2	0,010-1,0		10 %, отн.	4 %, отн.	
	CO	0,050-2,0		10 %, отн.	4 %, отн.	
	CO_2	0,050-1,0		10 %, отн.	4 %, отн.	
	He (N ₂)	ост.		,	,	
06.01.732	H ₂ S+N ₂	0,50-9,9		10 %, отн.	2 %, отн.	1
06.01.734	H ₂ +Ar	5,0-9,9		10 %, отн.	4 %, отн.	1
06.01.735	O ₂ +N ₂	0,0010-0,49		10 %, отн.	4 %, отн.	1
06.01.736	O ₂ +Ar	0,0010-0,49		10 %, отн.	4 %, отн.	1
06.01.737	CH ₄	0.030-0.10		10 %, отн.	4 %, отн.	1
	C_3H_8	0,030-0,10		10 %, отн.	4 %, отн.	
	CO	0,030-0,10		10 %, отн.	4 %, отн.	
	воздух	ост.		,	· ·	
06.01.738	NO ₂ +N ₂	0,0040-0,49		20 %, отн.	4 %, отн.	1
06.01.739	NO ₂ +N ₂	0,50-2,0		10 %, отн.	2 %, отн.	1
06.01.740	NO+N ₂	0,0040-0,49		20 %, отн.	4 %, oth.	1
06.01.741	NO+N ₂	0,50-9,9		10 %, OTH.	2 %, отн.	1
06.01.743	CH ₄	0,50-2,0		10 %, отн.	4 %, отн.	1
	C_3H_8	0,10-1,0		10 %, отн.	4 %, отн.	1
	C_4H_{10}	0,010-0,05		10 %, отн.	4 %, отн.	
	воздух	ост.		,	,	

190005, Санкт-Петербург, Московский пр., 19

Регистрационный	Компонентный	Номинальны объемной (моляр		Пределы допускаемого	Пределы допускаемой по-	ЯД
номер	состав	ределяемого п		отклонения	грешности	Разряд
помер	Состав	%	млн ⁻¹ (ppm)	±Д	±Δ	P
06.01.744	C ₃ H ₆	0,50-9,9	(44.00)	10 %, отн.	4 %, отн.	1
	C_3H_8	0,50-9,9		10 %, отн.	4 %, отн.	
	N_2	ост.		Í	•	
06.01.745	C ₂ H ₄ +N ₂	0,0010-0,49		10 %, отн.	5 %, отн.	1
06.01.746	H ₂ +Ar	10-94		10 %, отн.	1 %, отн.	1
06.01.747	SO ₂ +N ₂	0,0020-0,49		20 %, отн.	4 %, oth.	1
06.01.748	SO ₂ +N ₂	0,50-9,9		10 %, отн.	2 %, отн.	1
06.01.749	SO_2+N_2	10-18		10 %, отн.	2 %, отн.	2
06.01.750	SO ₂ +воздух	0,0020-0,49		20 %, отн.	4 %, отн.	1
06.01.751	SO ₂ +воздух	0,50-9,9		10 %, отн.	2 %, отн.	1
06.01.752	SO ₂ +воздух	10-18		10 %, отн.	2 %, отн.	2
06.01.753	NH ₃ +N ₂	5,0-9,9		10 %, отн.	3 %, отн.	2
06.01.754	NH ₃ +N ₂	10-94		10 %, отн.	3 %, отн.	2
06.01.755	NO ₂ +воздух	0,0020-0,49		20 %, отн.	10 %, отн.	2
06.01.756	C ₂ H ₆ + N ₂	0,50-9,9		10 %, отн.	2 %, отн.	1
06.01.757	C ₂ H ₆ + N ₂	10-94		10 %, отн.	1 %, отн.	1
06.01.758	N ₂ +He	10-94		10 %, отн.	1 %, отн.	1
06.01.759	СН2F-СF3+воздух		47-106	12 %, отн.	5 %, отн.	1
06.01.760	N ₂ O+N ₂	0,50-9,9		10 %, отн.	3 %, отн.	2
06.01.761	N ₂ O+N ₂	10-94		10 %, отн.	3 %, отн.	2
06.01.762	N ₂	0,050-2,0		10 %, отн.	4 %, отн.	1
	Ar	0,050-2,0		10 %, отн.	4 %, отн.	
	O_2	ост.				
06.01.763	CO		5,0-100	20 %, отн.	7 %, отн.	2
	CH ₄		5,0-100	20 %, отн.	7 %, отн.	
	SO_2		5,0-100	20 %, отн.	7 %, отн.	
	N_2		ост.			
06.01.764	C ₂ H ₅ SH+N ₂	0,002-0,49		20 %, отн.	10 %, отн.	2
06.01.765	C ₂ H ₅ SH+N ₂	0,00010-0,0019		30 %, отн.	15 %, отн.	2
06.01.766	CH ₃ SH+N ₂	0,002-0,49		20 %, отн.	10 %, отн.	2
06.01.767	CH ₃ SH+N ₂	0,00010-0,0019		30 %, отн.	15 %, отн.	2
06.01.768	Ar+N ₂	0,0010-0,49		15 %, отн.	6 %, отн.	1
06.01.769	Ar+N ₂	0,50-9,9		10 %, отн.	4 %, отн.	1
06.01.770	N ₂ +He	0,0010-0,49		15 %, отн.	6 %, отн.	1
06.01.771	N ₂ +He	0,50-9,9		10 %, отн.	4 %, отн.	1
06.01.772	He+O ₂	10-94		5 %, отн.	1 %, отн.	1
06.01.773	Xe+O ₂	10-94		5 %, отн.	1 %, отн.	1
06.01.774	N ₂ O+O ₂	10-94		5 %, отн.	1 %, отн.	1
06.01.775	CO ₂ +He	0,49-1,0		5 %, отн.	1 %, отн.	1
06.01.776	Xe+O ₂	0,50-9,9		10 %, отн.	4 %, отн.	1
06.01.777	N ₂ +Ar		10-50	20 %, отн.	8 %, отн.	2
06.01.778	O_2	0,50-21		15 %, отн.	5 %, отн.	2
	CO	0,0001-0,49		10 %, отн.	7 %, отн.	
	N_2	OCT.				
06.01.779	CO ₂	0,50-9,9		10 %, отн.	2 %, отн.	1
	i-C ₄ H ₁₀	0,50-9,9		10 %, отн.	2 %, отн.	
	Ar	ост.				
06.01.780	H ₂	70-94		5 %, отн.	1 %, отн.	1
	CH ₄	2-9,9		10 %, отн.	4 %, oth.	
	C_2H_6	2-9,9		10 %, отн.	4 %, отн.	
0.6.04.70.1	C ₃ H ₈	2-9,9		10 %, отн.	4 %, отн.	1
06.01.781	H ₂	65-89		5 %, отн.	1 %, отн.	1
	CH ₄	0,5-9,9		10 %, отн.	4 %, отн.	
	C ₂ H ₆	0,5-9,9		10 %, отн.	4 %, отн.	
	C_3H_8	10-15]	10 %, отн.	1 %, отн.	

Регистрационный номер	Компонентный состав	Номинальны объемной (моля ределяемого	рной) доли оп-	Пределы допускаемого отклонения	Пределы допускаемой по- грешности	Разряд
помер	0001415	%	млн ⁻¹ (ppm)	±Д	$\pm\Delta$	P
06.01.782	С ₃ Н ₈ + воздух	0,0010-0,49	- 41	10 %, отн.	4 %, отн.	1
06.01.783	CO	0,10-0,49		15 %, отн.	4 %, отн.	1
	CO_2	0,10-1,0		10 %, отн.	4 %, отн.	
	SO_2	0,10-0,49		10 %, отн.	4 %, отн.	
	NO	0,10-0,49		15 %, отн.	4 %, отн.	
	N_2	ост.				
06.01.784	С ₂ Н ₄ + воздух	0,0010-0,49		10 %, отн.	4 %, отн.	1
06.01.785	$C_2H_4+N_2$	10-94		10 %, отн.	1 %, отн.	1
06.01.786	C ₂ H ₆ +He	0,50-9,9		10 %, отн.	2 %, отн.	1
06.01.787	N ₂ +CH ₄	10-94		5 %, отн.	1 %, отн.	1
06.01.788	CH ₄ + Ar	0,5-9,9		10 %, отн.	4 %, отн.	1
06.01.789	O ₂ +He	10-94		4 %, отн.	0,4 %, отн.	1
06.01.790	O ₂ +He	0,001-0,49		10 %, отн.	4 %, отн.	1
06.01.791	CO ₂ +He	0,001-0,49		10 %, отн.	4 %, отн.	1
06.01.792	CO+He	0,001-0,49		10 %, отн.	4 %, отн.	1
06.01.793	C_3H_8	0,10-0,49		10 %, отн.	4 %, отн.	1
	C_6H_{14}	0,020-0,49		15 %, отн.	4 %, отн.	
	Не	ост.		100/		<u> </u>
06.01.794	CH ₄	0,9-6,0		10 %, отн.	3 %, отн.	1
	C ₂ H ₆	1,7-6,5		10 %, отн.	2,5 %, отн.	
	C ₃ H ₈	0,7-4,3		10 %, отн.	4 %, отн.	
	C_4H_{10}	0,07-2,8		10 %, отн.	4 %, отн.	
	$C_5H_{12} C_6H_{14}$	0,04-1,0 0,01-0,05		15 %, отн. 15 %, отн.	6 %, отн. 6 %, отн.	
	H ₂	0,01-0,03 0CT.		13 /0, UIH.	0 /0, OIH.	
06.01.795	H ₂ +He	0.010-0.49		15 %, отн.	6 %, отн.	1
06.01.796	H ₂ +He	0.5-9.9		10 %, отн.	2 %, отн.	1
06.01.797	H ₂ +He	10-50		5 %, OTH.	1 %, OTH.	1
06.01.798	N ₂	0.0040-0.040		15 %, отн.	5 %, отн.	1
00.01.790	O_2	0,0040-0,040		15 %, отн.	5 %, отн.	1
	CO_2	0.0040-0.040		15 %, отн.	5 %, отн.	
	CO	0,0040-0,040		15 %, отн.	5 %, отн.	
	Не	ост.		,		
06.01.799	C ₃ H ₈ +He	0,0010-0,49		10 %, отн.	4 %, отн.	1
06.01.800	C ₃ H ₈ +He	0,50-9,9		10 %, отн.	3 %, отн.	1
06.01.801	C ₃ H ₈ +N ₂	0,0010-0,49		15 %, отн.	5 %, отн.	1
06.01.802	N ₂ +O ₂	10,0-94		5 %, отн.	1 %, отн.	1
06.01.803	N ₂ +Ar	0,50-9,9		10 %, отн.	4 %, отн.	1
06.01.804	O ₂ +Ar	10,0-94		5 %, отн.	1 %, отн.	1
06.01.805	H ₂ +Ar	0,0010-0,49		15 %, отн.	6 %, отн.	1
06.01.806	He+H ₂	0,50-9,9		10 %, отн.	4 %, отн.	1
06.01.807	CO+H ₂	0,50-9,9		10 %, отн.	4 %, отн.	1
06.01.808	CH ₄ +H ₂	0,50-9,9		10 %, отн.	4 %, отн.	1
06.01.809	C ₆ H ₁₄ +He	0,0010-0,49		15 %, отн.	4 %, отн.	1
06.01.810	CH ₄ +He	0,50-9,9		10 %, отн.	4 %, отн.	1
06.01.811	CH ₄ +He	10,0-94		5 %, отн.	1 %, отн.	1

Регистрационный	Компонентный	Номинальнь объемной (моляр	ной) доли опре-	Пределы допускаемого	Пределы допускаемой	Разряд
номер	состав	деляемого к %	омпонента млн ⁻¹ (ppm)	отклонения ±Д	погрешности $\pm \Delta$	Pa
06.01.812	SF ₆ CF ₄ CO N ₂	0,0010-0,010 0,0010-0,010 0,0010-0,010	млн (ррш)	15 %, отн. 15 %, отн. 15 %, отн.	5 %, отн. 5 %, отн. 5 %, отн.	1
06.01.813	HCl+N ₂	ост. 0,005-0,49		20 %, отн.	5 %, отн.	1
06.01.814	Ne* H ₂ * O ₂	0,000 0,19	10-100 5-50 5-50	20 %, отн. 20 %, отн. 20 %, отн.	8 %, отн. 8 %, отн. 8 %, отн.	1
	N ₂ * CH ₄ CO CO ₂ * He		5-50 5-50 5-50 5-50 oct.	20 %, отн. 20 %, отн. 20 %, отн. 20 %, отн.	8 %, отн. 8 %, отн. 8 %, отн. 8 %, отн.	
06.01.815	С ₅ Н ₁₀ +воздух	0,2-0,7		10 %, отн.	4 %, отн.	1
06.01.816	CH ₄ C ₂ H ₆ C ₃ H ₄ C ₂ H ₂ C ₃ H ₈ C ₃ H ₆ H-C ₄ H ₁₀ C ₄ H ₈ H-C ₅ H ₁₂ H-C ₆ H ₁₄ He		20-50 20-50 20-50 20-50 20-50 20-50 20-50 20-50 20-50 20-50	20 %, отн. 20 %, отн.	10 %, отн. 10 %, отн.	1
06.01.817	CO ₂ +He		5-10	20 %, отн.	10 %, отн.	1
06.01.818	COS+ N ₂ CH ₄ C ₂ H ₆ C ₃ H ₈ u30-C ₄ H ₁₀ H-C ₄ H ₁₀ He0-C ₅ H ₁₂ * u30-C ₅ H ₁₂ H-C ₅ H ₁₂ H-C ₆ H ₁₄ CO ₂ N ₂ O ₂	0,0010-0,010 25-70 15-55 3-16 0,0020-4 0,0020-4 0,0005-0,05 0,0010-2 0,0010-2 0,0010-0,5 0,010-4 0,5-25 0,005-2		20 %, OTH. (10-5) %, OTH. (10-5) %, OTH. (20-10) %, OTH. (70-20) %, OTH. (70-20) %, OTH. (70-20) %, OTH. (70-20) %, OTH. (70-50) %, OTH. (70-20) %, OTH. (70-20) %, OTH. (70-20) %, OTH.	$\begin{array}{c} 10 \%, \text{ oth.} \\ \Delta=-0.0059 \cdot \text{X} + 0.594 \\ \Delta=0.0059 \cdot \text{X} + 0.005 \\ \Delta=0.0075 \cdot \text{X} \\ \Delta=0.01 \cdot \text{X} + 0.0001 \\ \Delta=0.01 \cdot \text{X} + 0.0001 \\ \Delta=0.02 \cdot \text{X} + 0.00005 \\ \Delta=0.0125 \cdot \text{X} + 0.00025 \\ \Delta=0.0075 \cdot \text{X} + 0.00025 \\ \Delta=0.0125 \cdot \text{X} + 0.00025 \\$	2
06.01.820	CO+He	0,49-1,0		10 %, отн.	2 %, OTH.	1
06.01.821 06.01.822	H ₂ +N ₂ C ₃ H ₈ CO N ₂	0,010-0,49 0,010-0,50 5,0-10,0 oct.		10 %, отн. 15 %, отн. 5 %, отн.	6 %, отн. 1,0 0,6	0
06.01.823	СО2+возд.	0,0010-0,010		10 %, отн.	4 %, отн.	1
06.01.824	O ₂ + N ₂	0,010-0,050		10 %, отн.	4 %, отн.	1
06.01.825	CO+He	0,030-0,10		10 %, отн.	4 %, отн.	1
06.01.826	CO+He	0,12-5,0		10 %, отн.	2 %, отн.	1
06.01.827 06.01.828	CH ₄ +He CH ₄ N ₂ (He, Ar)	0,030-0,10 0,12-0,50 oct.		10 %, отн. 10 %, отн.	4 %, отн. 3 %, отн.	1

Dawrama arra a ****	Varanara aranga	Номинальн		Пределы	Пределы	Ħ
Регистрационный	Компонентный	объемной (моляр		допускаемого	допускаемой	Разряд
номер	состав	деляемого в	млн ⁻¹ (ppm)	отклонения ±Д	погрешности $\pm \Delta$	Pa
06.01.829	CH ₄	10-20	мэн (ррні)	10 %, OTH.	1 %, OTH.	1
00.01.029	C_2H_6	10-20		10 %, отн.	1 %, отн.	
	C ₃ H ₈	3,0-7,0		10 %, отн.	3 %, отн.	
	изо-С ₄ Н ₁₀	2,0-6,0		10 %, отн.	4 %, отн.	
	н-С ₄ Н ₁₀	2,0-6,0		10 %, отн.	4 %, oth.	
	изо-С ₅ Н ₁₂	0,10-1,0		20 %, отн.	4 %, oth.	
	н-С ₅ Н ₁₂	0,10-1,0		20 %, отн.	4 %, oth.	
	N ₂	OCT.		20 70, 0111.	1 70, 0111.	
06.01.830	C ₂ H ₆ +B03	0,50-1,0		10 %, отн.	2 %, отн.	1
06.01.831	C ₂ H ₆ +N ₂	0,010-0,50		15 %, отн.	4 %, отн.	1
06.01.832	C ₂ H ₆	.,,.	10,0-200	15 %, отн.	6 %, отн.	1
	He (N ₂)		ост.	,	,	
06.01.833	CO ₂ +He	0,10-0,49		10 %, отн.	4 %, отн.	1
06.01.834	CO ₂ +He	1,00-9,9		10 %, отн.	2 %, отн.	1
06.01.835	CO ₂ +He	10,0-95		5 %, отн.	1 %, отн.	1
06.01.836	$C_6H_{14}+N_2$		10,0-100	20 %, отн.	6 %, отн.	1
06.01.837	CH ₄ +Ar	10,0-20,0		10 %, отн.	1 %, отн.	1
06.01.838	CH ₄ +H ₂	10,0-94		10 %, отн.	1 %, отн.	1
06.01.839	CH ₄ +N ₂	94-99		5 %, отн.	1 %, отн.	1
06.01.840	H ₂ +Ar	0,050-1,0	101 500	10 %, отн.	4 %, отн.	1
06.01.841	H ₂ +Ar		101-500	15 %, отн.	5 %, отн.	1
06.01.842	H ₂ +Ar		10,0-100	20 %, отн.	6 %, отн.	1
06.01.843	H_2+N_2		10,0-100	20 %, отн.	6 %, отн.	1
06.01.844	H_2+N_2	0.070.1.0	101-500	15 %, отн.	5 %, отн.	1
06.01.845	H ₂ + N ₂	0,050-1,0	0.010.0.10	10 %, отн.	4 %, oth.	1
06.01.846	O ₂		0,010-0,10	10 %, отн.	2 %, отн.	0
06.01.847	N ₂ (He, Ar)		ост. 100	10 %, отн.	4.0/ 0000	1
06.01.847	O_2		100	10 %, отн. 10 %, отн.	4 %, отн.	1
	N ₂		100	10 %, отн. 10 %, отн.		
	CO ₂ CH ₄		100	10 %, отн. 10 %, отн.		
	He		OCT.	10 /0, OIH.		
06.01.848	Xe+He		10,0-100	20 %, отн.	5 %, отн.	2
06.01.849	Xe+He		2,5	30 %, отн.	10 %, отн.	2
06.01.850	СН ₄ +возд.	0,015-0,080	2,0	15 %, отн.	4 %, oth.	1
06.01.851	C ₄ H ₁₀ +N ₂	0,5-1,0		20 %, отн.	4 %, отн.	1
06.01.852	C ₄ H ₁₀	0,10-5,0		10 %, отн.	3 %, отн.	1
	He (N ₂)	ост.		,	,	
06.01.853	С ₆ Н ₁₄ +воздух		50-200	20 %, отн.	6 %, отн.	1
06.01.854	C ₆ H ₆ +N ₂		10-100	20 %, отн.	10 %, отн.	2
06.01.855	C ₆ H ₆ +N ₂	0,012-0,49		15 %, отн.	5 %, отн.	1
06.01.856	CH ₄ + Ar	20-90		5 %, отн.	1 %, отн.	1
06.01.857	CO ₂ +H ₂	10-94		10 %, отн.	1 %, отн.	1
06.01.858	CO+H ₂	0,0030-0,49		10 %, отн.	4 %, отн.	1
06.01.859	CO ₂ +O ₂	0,50-4,0		10 %, отн.	2 %, отн.	1
06.01.860	C ₅ H ₁₂ +He	0,50-5,0		15 %, отн.	3 %, отн.	1
06.01.861	COS	0,010-0,20		15 %, отн.	7 %, отн.	2
	N ₂ (He)	ост.				
06.01.862	COS+N ₂	0,10-3,0		15 %, отн.	5 %, отн.	2
06.01.863	He+CH ₄	10,0-94		5 %, отн.	1 %, отн.	1
06.01.864	NO+ N ₂	10,0-90		5 %, OTH.	1 %, отн.	1
06.01.865	He+N ₂	0,010-0,10	20	10 %, отн.	5 %, отн.	1
06.01.866	C_2H_2		20	20 %, отн.	7 %, отн.	2
	He (N_2, Ar)		OCT.			

Регистрационный	Компонентный	Номинальнь объемной (моляр		Пределы допускаемого	Пределы допускаемой	Разряд
• .	состав	деляемого к	,	отклонения	погрешности	den
номер	состав	%	млн ⁻¹ (ppm)	±Д	ногрешности ±∆	Pa
06.01.867	C ₃ H ₆	0,50-13	(11)	10 %, отн.	4 %, отн.	1
06.01.060	He (N ₂)	ост. 0,0010-2,0		20 %, отн.	0.0/	_
06.01.868	C ₂ H ₄ He (N ₂)	0,0010-2,0 oct.		20 %, OTH.	8 %, отн.	2
06.01.869	SO ₂ +He	0,0020-10,0		15 %, отн.	4 %, отн.	1
06.01.870	C_5H_{12}	0,50-5,0		10 %, отн.	2 %, отн.	1
06.01.051	N ₂ (He, Ar)	ост.		20.0/	7.0/	
06.01.871	CO_2 C_2H_2	0,0010-0,49 0,0010-0,49		20 %, отн. 20 %, отн.	5 %, отн. 5 %, отн.	1
	N_2 (He, Ar)	0,0010-0,49 OCT.		20 %, OTH.	3 70, OTH.	
06.01.872	C ₄ H ₁₀	0,0010-0,49		20 %, отн.	5 %, отн.	1
	C_2H_4	0,0010-0,49		20 %, отн.	5 %, отн.	
	C_2H_2	0,0010-0,49		20 %, отн.	5 %, отн.	
06.01.072	N ₂ (He, Ar)	OCT.		10 %, отн.	2.0/	1
06.01.873	CH_4 C_2H_6	0,50-3,0 10-90		10 %, OTH. 10 %, OTH.	2 %, отн. 1 %, отн.	1
	C ₃ H ₈	0,50-3,0		10 %, отн.	2 %, отн.	
	CO_2	0,0010-0,49		20 %, отн.	4 %, oth.	
	N ₂ (He, Ar)	ост.				
06.01.875	O_2	0,5-3,0		10 %, отн.	3 %, отн.	1
	N ₂ CO	0,5-9,9		10 %, отн.	3 %, OTH.	
	CH ₄	0,5-9,9 10-20		10 %, отн. 10 %, отн.	3 %, отн. 2 %, отн.	
	H ₂	0,5-20		10 %, отн.	3 %, отн.	
	$\overrightarrow{CO_2}$	10-20		10 %, отн.	2 %, отн.	
	Не	ост.				
06.01.876	CH ₄	0,00050-0,50		20 %, отн.	10 %, отн.	2
	C ₃ H ₈	0,0010-0,50 0,0010-0,50		20 %, отн.	5 %, OTH.	
	i-C ₄ H ₁₀ C ₂ H ₂	0,0010-0,50		20 %, отн. 20 %, отн.	5 %, отн. 5 %, отн.	
	C ₄ H ₈	0,0010-0,50		20 %, отн.	5 %, отн.	
	C_4H_{10}	0,0010-0,50		20 %, отн.	5 %, отн.	
	C_3H_6	0,0010-0,50		20 %, отн.	5 %, отн.	
	C ₂ H ₄	0,0010-0,50		20 %, отн.	5 %, отн.	
	C_2H_6 i- C_5H_{12}	0,0010-0,50 0,0010-0,50		20 %, отн. 20 %, отн.	5 %, отн. 5 %, отн.	
	C ₅ H ₁₂	0,0010-0,50		20 %, OTH. 20 %, OTH.	5 %, OTH.	
	N ₂ (He, Ar)	ост.		20 70, 0111.	2 70, 0111.	
06.01.877	H ₂ S+H ₂	0,0010-2,0		20 %, отн.	4 %, отн.	1
06.01.878	С ₆ Н ₁₄ +воздух	0,10-0,50		15 %, отн.	3 %, отн.	1
06.01.879	C_6H_6	0,0010-0,50		15 %, отн.	4 %, отн.	1
06.01.880	N ₂ (He, Ar) i-C ₄ H ₁₀	ост. 0,0010-2,0		15 %, отн.	4 %, отн.	1
00.01.000	N_2 (He, Ar)	ост.		15 70, 0111.	4 /0, 0111.	1
06.01.881	H ₂	10,0-20		5 %, отн.	1 %, отн.	1
	C_2H_4	0,5-9,9		10 %, отн.	2 %, отн.	
	C_2H_6	0,5-9,9		10 %, отн.	2 %, отн.	
	C ₃ H ₈ C ₃ H ₆	0,5-30 0,5-9,9		10 %, отн. 10 %, отн.	2 %, отн. 2 %, отн.	
	i-C ₄ H ₁₀	0,5-9,9		10 %, OTH. 10 %, OTH.	2 %, отн. 2 %, отн.	
	C_4H_{10}	0,5-9,9		10 %, отн.	2 %, oth.	
	C_4H_8	0,5-9,9		20 %, отн.	5 %, отн.	
	Трнс-С ₄ Н ₈	0,5-9,9		20 %, отн.	5 %, отн.	
	Цис-C ₄ H ₈ C ₅ H ₁₂	0,5-9,9 0,5-5,0		20 %, отн. 20 %, отн.	5 %, отн. 7 %, отн.	

190005, Санкт-Петербург, Московский пр., 19 тел: (812) 315-11-45 E-mail:info@vniim.ru факс: (812) 327-97-76

n	10	Номинальнь		Пределы	Пределы	Разряд
Регистрационный	Компонентный	объемной (моляр		допускаемого	допускаемой	азр
номер	состав	деляемого к	омпонента млн ⁻¹ (ppm)	отклонения ±Д	погрешности $\pm \Delta$	P
06.01.882	H ₂ S	0,50-10,0	мин (ррні)	10 %, отн.	2 %, отн.	1
	CO	0,50-10,0		10 %, отн.	2 %, отн.	
	CO_2	0,50-10,0		10 %, отн.	2 %, отн.	
	N_2 (He, Ar)	ост.				
06.01.883	C_3H_8	0,0010-0,50		20 %, отн.	4 %, отн.	1
	O_2	0,50-10,0		10 %, отн.	2 %, отн.	
	N_2 (He, Ar)	OCT.				
06.01.884	С ₃ Н ₆ +воздух	0,0010-0,50		20 %, отн.	4 %, отн.	1
06.01.885	CO	0,50-40		10 %, отн.	2 %, отн.	1
	CO_2	0,50-25		10 %, отн.	2 %, отн.	
	H ₂	0,50-20		10 %, отн.	3 %, отн.	
	CH ₄	0,50-10,0		10 %, отн.	4 %, отн.	
	N_2 (He, Ar)	ост.				
06.01.886	H ₂ S	0,00010-0,050		20 %, отн.	10 %, отн.	2
	CH ₃ SH	0,00010-0,050		20 %, отн.	10 %, отн.	
	C ₂ H ₅ SH	0,00010-0,050		20 %, отн.	10 %, OTH.	
	COS	0,00010-0,050		20 %, отн.	10 %, отн.	
06.01.887	N ₂ (He, Ar)	OCT.		10.0/ 2007	2 0/ 0000	1
06.01.887 06.01.888	O ₂ +CO ₂	0,50-10,0 0,0010-0,50		10 %, отн.	2 %, OTH.	1
0.01.000	CH ₄ C ₃ H ₈	0,0010-0,50		20 %, отн. 20 %, отн.	4 %, отн. 4 %, отн.	1
	CO CO	0,0010-0,50		20 %, OTH. 20 %, OTH.	4 %, OTH. 4 %, OTH.	
	Воздух	ост.		20 /0, UIH.	4 /0, UIH.	
06.01.889	С ₇ Н ₈ +Воз.	0,0010-0,50		20 %, отн.	4 %, отн.	1
06.01.890	H ₂ +C ₃ H ₆	0,50-10,0		10 %, OTH.	2 %, отн.	1
06.01.891	O_2	10,0-50		5 %, OTH.	1 %, OTH.	1
)0.01.071	N_2	10,0-50		5 %, oth.	1 %, отн.	1
	He, Ar	ост.		3 70, 0111.	1 70, 0111.	
06.01.892	Ar	0,50-9,9		10 %, отн.	2 %, отн.	1
.0.01.0,2	Не	10,0-30,0		5 %, отн.	1 %, отн.	-
	Ne	ост.		,	, .	
06.01.893	N ₂ +O ₂	10,0-80		5 %, отн.	1 %, отн.	1
06.01.894	CO+H ₂	10,0-50		5 %, отн.	1 %, отн.	1
06.01.895	CO ₂ +H ₂	0,50-5,0		10 %, отн.	3 %, отн.	1
06.01.896	H ₂ +CO ₂	0,50-5,0		10 %, отн.	3 %, отн.	1
06.01.897	H ₂ +O ₂	0,50-1,0		20 %, отн.	4 %, отн.	1
06.01.898	CO	0,50-35		10 %, отн.	3 %, отн.	1
	CO_2	2,0-25		10 %, отн.	3 %, отн.	
	H_2	0,50-5,0		10 %, отн.	4 %, отн.	
	O_2	0,5-4,0		20 %, отн.	4 %, отн.	
	N ₂ (He, Ar)	ост.				
06.01.899	CO ₂	10,0-25		5 %, отн.	1 %, отн.	1
	H_2S	0,50-5,0		10 %, отн.	2 %, отн.	
	H_2	0,50-5,0		10 %, отн.	2 %, отн.	
	N_2	0,50-5,0		10 %, отн.	2 %, отн.	
	CH ₄	ост.				
06.01.901	CO	0,010-1,0		20 %, отн.	4 %, отн.	1
	CO_2	0,050-1,0		20 %, отн.	4 %, отн.	
	H ₂ *	0,050-1,0		20 %, отн.	4 %, отн.	
	CH ₄ *	0,0050-0,50		20 %, отн.	5 %, отн.	
	C_2H_6	0,0010-0,50		20 %, отн.	5 %, отн.	
	C ₂ H ₄	0,0050-0,50		20 %, отн.	5 %, отн.	
	C ₂ H ₂ *	0,0010-0,50		20 %, отн.	5 %, отн.	
	N ₂ *	0,10-5,0		15 %, отн.	4 %, отн.	
	O ₂ *	0,10-1,5		15 %, отн.	4 %, отн.	
	He (Ar)	OCT.				

190005, Санкт-Петербург, Московский пр., 19 5-11-45 E-mail:info(

Регистрационный	Компонентный	Номинальнь		Пределы	Пределы	Разряд
-		объемной (молярной) доли опре- деляемого компонента		допускаемого	допускаемой	a3J
номер	состав	деляемого к	омпонента млн ⁻¹ (ppm)	отклонения ±Д	погрешности $\pm \Delta$	Ь
06.01.900	C_7H_8	0,0010-0,50	TT /	20 %, отн.	4 %, отн.	1
	N_2 (He, Ar)	ост.				
06.01.902	H_2	0,0010-2,0		20 %, отн.	4 %, отн.	1
	O_2	0,0010-0,50		20 %, отн.	5 %, отн.	
	N_2	0,0010-2,0		20 %, отн.	4 %, отн.	
	CH_4	0,0010-3,0		20 %, отн.	4 %, отн.	
	Ar (He)	ост.				
06.01.903	С ₆ Н ₆ +воздух	0,0010-0,50		20 %, отн.	4 %, отн.	1
06.01.904	CO	0,050-1,0		20 %, отн.	4 %, отн.	1
	NO	0,0010-0,50		20 %, отн.	5 %, отн.	
	CH ₄	0,050-1,0		20 %, отн.	4 %, отн.	
	SO_2	0,0010-0,50		20 %, отн.	5 %, отн.	
	N_2 (He, Ar)	ост.				
06.01.905	С2Н4+воздух	0,0010-0,50		20 %, отн.	5 %, отн.	1
06.01.906	O ₂ +H ₂	0,010-0,10		20 %, отн.	4 %, отн.	1
06.01.907	Н ₂ S+воздух	0,0005-0,050		30 %, отн.	10 %, отн.	2
06.01.908	і-С ₄ Н ₈ +воздух	, -,	20-200	25 %, отн.	10 %, отн.	2
06.01.909	СНСІГ2+воздух		28-140	15 %, отн	6 %, отн.	1
06.01.910	С3F7H+воздух		15-147	15 %, отн	6 %, отн.	1
06.01.911	С ₃ Г ₇ Н+воздух		442-1472	15 %, отн	4 %, oth.	1
06.01.914	H ₂ S+H ₂	2.0-10.0	442-14/2	15 %, отн.	3 %, OTH.	1
06.01.917	CO+He	10,0-20,0			1 %, OTH.	1
06.01.918	C ₂ H ₅ SH			5 %, отн. 20 %, отн.		2
06.01.918		0,010-0,50		20 %, OTH.	10 %, отн.	2
06.01.010	C ₃ H ₈	ост.		15.0/	7.0/	
06.01.919	C ₂ H ₅ SH	0,50-4,5		15 %, отн.	7 %, отн.	2
0.6.04.020	C ₃ H ₈	OCT.		100/	5.0/	
06.01.920	SF ₆ N ₂ (воздух)	0,040-0,20		10 %, отн.	5 %, отн.	1
06.01.921		ост. 0,0020-0,010		20 %, отн.	7 %, отн.	2
06.01.921	C ₃ H ₆			20 %, OTH.	/ %, OTH.	2
06.01.022	N ₂ (Ar,He)	OCT.		20.0/ 0000	7.0/ 0000	2
06.01.922	n-C ₄ H ₁₀	0,0050-0,010		20 %, отн.	7 %, отн.	2
06.01.022	N ₂ (Ar,He)	OCT.		20.0/	5.0/	1
06.01.923	C ₂ H ₆	0,0010-0,50		20 %, отн.	5 %, OTH.	1
	C ₂ H ₄ *	0,0010-0,50		20 %, отн.	5 %, отн.	
	C_2H_2	0,0010-0,50		20 %, отн.	5 %, отн.	
	C ₃ H ₈	0,0010-0,50		20 %, отн.	5 %, отн.	
	C ₃ H ₆ *	0,0010-0,50		20 %, отн.	5 %, отн.	
	n-C ₄ H ₁₀	0,0010-0,50		20 %, отн.	5 %, отн.	
	i-C ₄ H ₁₀	0,0010-0,50		20 %, отн.	5 %, отн.	
0601001	N ₂	OCT.		7.0/	1.0/	
06.01.924	He+H ₂	10,0-94		5 %, отн.	1 %, отн.	1
06.01.925	Ar+O ₂	0,5-9,9		20 %, отн.	8 %, отн.	2
06.01.926	N ₂ +O ₂	0,5-9,9		20 %, отн.	8 %, отн.	2
06.01.927	N ₂ +O ₂	0,0010-0,49		25 %, отн.	5 %, отн.	1
06.01.928	C_2H_2	0,5-10,0		10 %, отн.	3 %, отн.	1
	N ₂ (Ar,He)	OCT.				
06.01.929	п-С ₆ Н ₁₄ +воздух	0,0010-0,6		20 %, отн.	5 %, отн.	1
06.01.930	CO ₂ +N ₂	0,0005-0,0010		20 %, отн.	10 %, отн.	2
06.01.931	CO	0,50-10,0		10 %, отн.	3 %, отн.	1
	CO ₂	10,0-20,0		5 %, отн.	1 %, отн.	
	Ar	0,50-10,0		10 %, отн.	3 %, отн.	
	N_2	0,50-10,0		10 %, отн.	3 %, отн.	
	CH ₄	0,50-10,0	1	10 %, отн.	3 %, отн.	1
	H ₂	0,50-10,0		10 70, 0111.	5 70, 0111.	

Регистрационный номер	Компонентный состав	Номинальнь объемной (моляр деляемого к	ной) доли опре- омпонента	Пределы допускаемого отклонения	Пределы допускаемой погрешности	Разряд
06.01.932	СО	% 0,50-5,0	млн ⁻¹ (ppm)	±Д 10 %, отн.	±Δ 3 %, отн.	1
	O_2	10,0-20,0		5 %, отн.	1 %, отн.	
	N_2	0,50-2,0		10 %, отн.	3 %, отн.	
	H ₂	0,50-2,0		10 %, отн.	3 %, отн.	
	CH ₄	0,50-2,0		10 %, отн.	3 %, отн.	
06.01.933	Ar	ост. 0,50-20,0		10 %, отн.	3 %, отн.	1
00.01.933	N ₂ Ar	0,50-20,0		10 %, отн. 10 %, отн.	3 %, OTH. 3 %, OTH.	1
	CH ₄	0,50-10,0		10 %, отн. 10 %, отн.	3 %, OTH.	
	H ₂	0,50-10,0		10 /0, OIH.	3 /0, OTH.	
06.01.934	O_2+H_2	0,0020-0,010		20 %, отн.	5 %, отн.	1
06.01.935	С ₃ Н ₈ +воздух	0,048		0,010	0,004	2
06.01.936	СО+воздух	0,0.0	120-200	10	4	1
06.01.937	O ₂ +N ₂	95,0-99,0		0,2	0,06	1
06.01.938	O ₂ +H ₂	0,50-1,00		0.05	0,02	1
06.01.939	O ₂ +H ₂	1,10-2,00		0,10	0,03	1
06.01.940	O ₂ +H ₂	1,50-3,00		0,15	0,05	1
06.01.941	O ₂ +He	0,50-1,00		0,05	0,02	1
06.01.942	O ₂ +He	1,10-2,00		0,10	0,03	1
06.01.943	O ₂ +Ar	0,50-1,00		0,05	0,02	1
06.01.944	O ₂ +Ar	1,1-2,0		0,1	0,03	1
06.01.945	O ₂ +Ar	2,50-5,00		0,25	0,05	1
06.01.946	O ₂ +Ar	25,0-95,0		2,5	0,5	1
06.01.947	H ₂ +O ₂	0,25-0,50		0,05	0,02	1
06.01.948	H ₂ +O ₂	1,50-3,00		0,15	0,05	1
06.01.949	H_2+N_2	95,0		0,2	0,08	2
06.01.950	H ₂ +CH ₄	50,0-85,0		1,0	0,3	1
06.01.951	СН4+воздух	0,10-0,20		0,03	0,02	2
06.01.952	H_2	0,250-0,500		0,025	0,010	
	CO_2	9,5		0,5	0,15	
	O_2	1,9		0,1	0,03	1
06.01.052	N ₂	OCT.		0.05	0.010	1
06.01.953	H ₂	0,50-1,00		0,05	0,010	1
	$ \begin{array}{c} \text{CO}_2\\ \text{O}_2 \end{array} $	9,5 1,9		0,5 0,1	0,15 0,03	
	N_2	OCT.		0,1	0,03	
06.01.954	SO ₂ +N ₂	001.	30-60	3	1,8	1
06.01.955	SO ₂ +N ₂		100-200	10	6	1
06.01.956	SO ₂ +N ₂	0,094	100 200	0,009	0,005	1
06.01.958	С ₃ Н ₈ +воздух	*,***	2,0-10,0	20 %, отн.	10 %, отн.	2
06.01.959	H ₂ S		1,0-500	20 %, отн.	10 %, отн.	2
	CH₃SH		1,0-500	20 %, отн.	10 %, отн.	
	C ₂ H ₅ SH		1,0-500	20 %, отн.	10 %, отн.	
	CS_2		20-50	20 %, отн.	10 %, отн.	
	N ₂ (He, Ar)		ост.			
06.01.960	Ar	0,50-5,0		10 %, отн.	4 %, отн.	1
	N_2	10,0-20,0		5 %, отн.	1 %, отн.	
	CO	10,0-15,0		5 %, отн.	1 %, отн.	
	CO ₂	0,50-5,0		10 %, отн.	4 %, отн.	
	CH ₄	0,50-5,0		10 %, отн.	4 %, отн.	
	H_2	OCT.				

Регистрационный	Компонентный	Номинальнь объемной (моляр	ной) доли опре-	Пределы допускаемого	Пределы допускаемой	Разряд
номер	состав	деляемого к		отклонения	погрешности	Pg
06.01.061	CO	0,0010-0,010	млн ⁻¹ (ppm)	±Д 20 %, отн.	±Δ	1
06.01.961	CO				12 %, отн.	1
	CO_2	0,0010-0,010		15 %, отн.	5 %, OTH.	
	H ₂	0,0010-0,010		15 %, отн.	7 %, отн.	
	CH ₄	0,0010-0,010		15 %, отн.	5 %, отн.	
	C_2H_6	0,0010-0,010		15 %, отн.	7 %, отн.	
	C ₂ H ₄	0,0010-0,010		15 %, отн.	7 %, отн.	
	C_2H_2	0,0010-0,010		15 %, отн.	7 %, отн.	
	O_2	10,0-30		10 %, отн.	1 %, отн.	
06.01.062	N ₂	OCT.		10.0/	5.0/	1
06.01.962	CO	0,010-0,10		10 %, OTH.	5 %, OTH.	1
	CO_2	0,010-0,50		10 %, отн.	2 %, отн.	
	H ₂	0,010-0,10		10 %, отн.	2 %, отн.	
	CH ₄	0,010-0,10		10 %, отн.	2 %, отн.	
	C_2H_6	0,010-0,10		10 %, отн.	2 %, отн.	
	C ₂ H ₄	0,010-0,10		10 %, отн.	2 %, отн.	
	C_2H_2	0,010-0,10		10 %, отн.	3 %, OTH.	
	O_2	10,0-30		10 %, отн.	1 %, отн.	
06.01.963	N ₂ CO	ост. 0,050-0,50		10 %, отн.	4 %, отн.	1
00.01.903	CO_2	0,50-5,0		10 %, отн. 10 %, отн.		1
		0,050-0,50		10 %, отн. 10 %, отн.	3 %, отн. 4 %, отн.	
	H_2	5,0-30,0				
	O ₂	, ,		10 %, отн.	3 %, отн.	
06.01.964	N ₂ (He,Ar)	ост. 0,010-0,40		10 %, отн.	5 %, отн.	1
06.01.965	H ₂ +воздух Ar+He	0,10-3,0		10 %, OTH.	4 %, OTH.	1
06.01.966	O ₂	0,050-0,50		10 %, отн.	4 %, OTH. 4 %, OTH.	1
00.01.900	$\begin{array}{ c c }\hline O_2 \\ CO_2 \end{array}$					1
	N_2 (He, Ar)	5,0-30,0		10 %, отн.	3 %, отн.	
06.01.968	CS ₂	ост. 0,002-0,10		20 %, отн.	10 %, отн.	2
00.01.908	CS_2	0,10-0,50		15 %, отн.	7 %, отн.	
	N ₂ (He)	ост.		15 70, 0111.	7 70, 0111.	
06.01.969	Ne	001.	5	30 %, отн.	8 %, отн.	2
00.01.909	H ₂		1	30 %, отн.	8 %, отн.	_
	CH ₄		1	30 %, отн.	8 %, oth.	
	CO		1	30 %, отн.	8 %, OTH.	
	CO_2		1	30 %, отн.	8 %, отн.	
	He		ост.	, . ,		
06.01.970	n-C ₄ H ₁₀	0,010-0,10		10 %, отн.	4 %, отн.	1
	N ₂ (Ar, He)	ост.		,	, , , , , , , , , , , , , , , , , , ,	
06.01.971	CO+H ₂		1-30	20 %, отн.	10 %, отн.	2
06.01.972	H ₂ S+CH ₄		1-50	20 %, отн.	10 %, отн.	2
06.01.973	C ₂ H ₄ +C ₃ H ₆	0,50-3,0		10 %, отн.	4 %, отн.	1
06.01.974	C_2H_2	0,020-0,50		10 %, отн.	4 %, отн.	1
	N ₂ (Ar, He)	OCT.				
06.01.975	C_3H_6	0,010-0,50		10 %, отн.	4 %, отн.	1
	N ₂ (Ar, He)	OCT.				
06.01.976	C_2H_2		5-20	30 %, отн.	12 %, отн.	2
	N ₂ (Ar, He)		ост.			
06.01.977	Xe	0,010-1,0		10 %, отн.	4 %, отн.	1
		1,0-10		10 %, отн.	3 %, отн.	
		10,0-50		5 %, отн.	1 %, отн.	
	Не	ост.				
06.01.978	O ₂ +CH ₄	0,50-9,9		10 %, отн.	3 %, отн.	1
06.01.979	i-C ₄ H ₁₀	11,0-26,0		5 %, отн.	1 %, отн.	1
	N ₂ (Ar, He)	OCT.				

Регистрационный	Компонентный	Номинальны объемной (мо.		Пределы допускаемого	Пределы допускаемой	Разряд
_				•		[33]
номер	состав	определяемого %	млн ⁻¹ (ppm)	отклонения ±Д	погрешности $\pm \Delta$	Ъ
06.01.980	C ₃ H ₈	10,0-70	417	5 %, отн.	1 %, отн.	1
06.01.981	N ₂ (Ar, He) CH ₄ +CO	ост. 10,0-30		5 %, отн.	1 %, отн.	1
		10,0-30	5.0.25			_
06.01.982	CH ₄ + N ₂	0.010.0.50	5,0-25	20 %, отн.	10 %, отн.	2
06.01.983	H ₂ CO	0,010-0,50 0,010-0,50		10 %, отн. 10 %, отн.	5 %, отн. 5 %, отн.	1
	N ₂ (Ar, He)	ост.		10 70, 0111.	3 70, 0111.	
06.01.984	CO ₂	0,050-0,10		10 %, отн.	5 %, отн.	2
	CH ₄	0,0010-0,10		10 %, отн.	5 %, отн.	
	C_2H_6	0,0010-0,10		10 %, отн.	5 %, отн.	
	C_2H_4	0,0010-0,10		10 %, отн.	5 %, отн.	
	C_2H_2	0,0010-0,10		10 %, отн.	5 %, отн.	
	Ar	OCT.				
06.01.985	H ₂ S		1,0-20	25 %, отн.	10 %, отн.	2
	CH ₃ SH		1,0-20	25 %, отн.	10 %, отн.	
	C_2H_5SH		1,0-20	25 %, отн.	10 %, отн.	
	COS		1,0-20	25 %, отн.	10 %, отн.	
	CH ₄		ост.	1.5.07	0.04	
06.01.986	H ₂ S		20-200	15 %, отн.	8 %, отн.	2
	CH₃SH		20-200	15 %, отн.	8 %, отн.	
	C ₂ H ₅ SH		20-200	15 %, отн.	8 %, отн.	
	COS CH ₄		20-200 ост.	15 %, отн.	8 %, отн.	
06.01.987	CS ₂		5,0-20	25 %, отн.	12 %, отн.	2
00.01.707	N ₂ (He)		ост.	23 70, 0111.	12 /0, 0111.	2
06.01.988	H ₂ +CH ₄	95-99		1,0	0,3	1
06.01.989	O_2		20-100	30 %, отн.	10 %, отн.	1
	N ₂		20-100	15 %, отн.	6 %, отн.	
	Не		ост.			
06.01.990	O_2	3,0-10,0		10 %, отн.	2 %, отн.	1
	N_2	3,0-10,0		10 %, отн.	2 %, отн.	
	He(Ar)	ост.				
06.01.991	H ₂ S	0,10-1,0		10 %, отн.	5 %, отн.	1
	CO ₂	10,0-30		5 %, отн.	1 %, отн.	
06.01.002	He	ост.		15.0/	6.0/	1
06.01.992	CO	0,0020-0,010		15 %, отн.	6 %, отн.	1
		0,010-0,50		10 %, отн.	5 %, OTH.	
		0,50-9,9		10 %, OTH.	2 %, отн.	
	CO_2	10,0-30 0,0020-0,010		5 %, отн. 15 %, отн.	1 %, отн. 6 %, отн.	
		0,0020-0,010		13 %, отн. 10 %, отн.		
		0,50-9,9		10 %, отн. 10 %, отн.	5 %, отн. 2 %, отн.	
		10,0-30		5 %, отн.	2 %, отн. 1 %, отн.	
	N ₂ (He)	ост.		3 70, 0111.	1 70, 0111.	
06.01.993	CH ₃ SH	0,50-2,0		20 %, отн.	7 %, отн.	2
00.01.555	N ₂ (He)	OCT.		20 70, 0111.	, , 0, 0111.	_
06.01.994	C ₂ H ₅ SH	0,50-2,0		20 %, отн.	7 %, отн.	2
06.01.995	CO		1,0-20	30 %, отн.	13 %, отн.	2
	CO_2		1,0-20	30 %, отн.	13 %, отн.	
	CH ₄		100-500	15 %, отн.	6 %, отн.	
	C_2H_6		100-500	15 %, отн.	6 %, отн.	
	C_2H_2		5,0-20	25 %, отн.	12 %, отн.	
	Не		ост.			
06.01.996	CO ₂ +He		1,0-10	30 %, отн.	13 %, отн.	2
06.01.997	i-C ₅ H ₁₂	0,010-1,0		10 %, отн.	4 %, отн.	1
	$N_2(Ar, He)$	ост.				

190005, Санкт-Петербург, Московский пр., 19

Регистрационный	Компонентный	Номинальны объемной (моляр		Пределы допускаемого	Пределы допускаемой	Разряд
номер	состав	деляемого к	, <u>1</u>	отклонения	погрешности	, a3
номер	COCTAB	%	млн ⁻¹ (ppm)	±Д	±Δ	
06.01.998	CH ₄ +H ₂	0,0010-0,10	mani (ppin)	15 %, отн.	5 %, отн.	1
06.01.999	C ₂ H ₅ SH+CH ₄		5,0-20	20 %, отн.	10 %, отн.	2
06.01.1000	H ₂ S		1,0-10	30 %, отн.	10 %, отн.	2
	He (N ₂)		ост.	,		
06.01.1001	і-С4Н8+воздух		10-19	30 %, отн.	12 %, отн.	2
06.01.1002	N ₂ +O ₂	0,010-0,50		10 %, отн.	4 %, отн.	1
06.01.1003	CO ₂ +CH ₄	10,0-50		5 %, отн.	1 %, отн.	1
06.01.1004	$C_5H_{12}+N_2$	0,010-0,50		10 %, отн.	4 %, отн.	1
06.01.1005	СН ₄ +воздух	95-98		2 %, отн.	0,8 %, отн.	1
06.01.1006	CO ₂ +C ₂ H ₄	0,0010-0,10		15 %, отн.	5 %, отн.	1
06.01.1008	CH ₃ OH+ N ₂	0,0050-0,050		30 %, отн.	13 %, отн.	2
06.01.1009	C_2H_2	0,05		0,02	0,005	2
	C_2H_4	0,10-0,12		0,02	0,010	
	CH ₄	0,10-0,12		0,02	0,010	
	C_2H_6	0,10-0,12		0,02	0,010	
	H ₂ CO	0,10-0,12		0,02 0,02	0,010 0,010	
	CO_2	0,10-0,12 0,35-0,40		0,02	0,010	
	Ar	0,33-0,40 oct.		0,04	0,03	
06.01.1010	H ₂	0,10-0,50		10 %, отн.	4 %, отн.	1
00.01.1010	O_2	0,50-2,0		10 %, отн.	3 %, OTH.	1
	N_2	ост.		10 70, 0111.	5 70, 0111.	
06.01.1011	$C_6H_6+N_2$	001.	3,0-10	30 %, отн.	13 %, отн.	2
06.01.1013	CO ₂	0,010-0,10	2,0 10	10 %, отн.	4 %, oth.	1
	CH ₄	0,010-0,10		10 %, отн.	4 %, oth.	_
	N_2	ост.		,	,	
06.01.1014	H_2	10,0-18		5 %, отн.	1 %, отн.	1
	CH ₄	9,0-52		5 %, отн.	1 %, отн.	
	CO	10,0-26		5 %, отн.	1 %, отн.	
	N_2	OCT.				
06.01.1015	H_2	5,0-10,0		10 %, отн.	2 %, отн.	1
	CO_2	10,0-20		5 %, отн.	1 %, отн.	
	CO	20-30		5 %, отн.	1 %, отн.	
06.01.1016	N ₂	ост.		10.0/	2.0/	1
06.01.1016	H_2	5,0-10,0		10 %, OTH.	2 %, отн.	1
	$\begin{array}{c} \mathrm{O_2} \\ \mathrm{CO_2} \end{array}$	1,0-5,0 20-25		10 %, отн. 5 %, отн.	3 %, отн. 1 %, отн.	
	Ar	1,0-5,0		10 %, отн.	3 %, OTH.	
	CO	20-25		5 %, отн.	1 %, отн.	
	N ₂	ост.		3 70, 0111.	1 70, 0111.	
06.01.1017	O_2	5,0-10,0		10 %, отн.	2 %, отн.	1
	N_2	1,0-5,0		10 %, отн.	3 %, отн.	_
	Xe	0,40-8,0		10 %, отн.	4 %, отн.	
	He(Ar)	ост.				
06.01.1018	Ar+O ₂	80-99		2 %, отн.	0,5 %, отн.	1
06.01.1019	Xe+Ar	5,0-10,0		10 %, отн.	2 %, отн.	1
06.01.1020	H ₂	0,020-0,050		15 %, отн.	5 %, отн.	1
	O_2	0,020-0,050		10 %, отн.	4 %, отн.	
	N_2	0,020-0,80		10 %, отн.	4 %, отн.	
	CH ₄	0,10-0,50		10 %, отн.	4 %, отн.	
	CO ₂	0,020-0,050		15 %, отн.	5 %, отн.	
	Kr	0,10-0,50		10 %, отн.	4 %, отн.	
	Ar(He)	OCT.			1	

		Номинальны	а энэнэния	Пределы	Пределы	Ι _
Регистрационный	Компонентный	объемной (моляр		допускаемого	допускаемой	Разряд
номер	состав	деляемого к	, .	отклонения	погрешности) [33]
помер	СОСТАВ	%	млн ⁻¹ (ppm)	±Д	±Λ	
06.01.1021	N ₂	0,10-5,0	мын (ррш)	15 %, отн.	4 %, oth.	1
00.01.1021	\overrightarrow{CO}_2	0,010-0,50		15 %, отн.	5 %, OTH.	1
	C_2H_6	1,0-8,0		15 %, отн.	2 %, отн.	
	C ₃ H ₈	1,0-5,0		15 %, отн.	2 %, отн.	
	i-C ₄ H ₁₀	0,10-0,50		15 %, отн.	4 %, oth.	
	n-C ₄ H ₁₀	0,10-0,50		15 %, отн.	4 %, oth.	
	C_5H_{12}	0,10-0,50		15 %, отн.	5 %, отн.	
	CH ₃ OH	0,010-0,050		15 %, отн.	10 %, отн.	
	CH ₄	ост.		•		
06.01.1022	C_2H_6	0,50-1,0		10 %, отн.	4 %, отн.	1
	i-C ₄ H ₁₀	0,10-0,50		10 %, отн.	3 %, отн.	
	$n-C_4H_{10}$	0,10-0,50		10 %, отн.	3 %, отн.	
	C_3H_8	ост.				
06.01.1023	N ₂	1,0-3,0		15 %, отн.	4 %, отн.	1
	CH ₄	0,90-40		15 %, отн.	2 %, отн.	
	C_3H_8	3,0-40		15 %, отн.	2 %, отн.	
	i-C ₄ H ₁₀	0,010-0,10		15 %, отн.	5 %, отн.	
	$n-C_4H_{10}$	0,010-0,10		15 %, отн.	5 %, отн.	
	C_2H_6	ост.				
06.01.1024	N ₂	1,0-8,0		10 %, отн.	2 %, отн.	1
	C_2H_6	30-40		10 %, отн.	1 %, отн.	
	C_3H_8	10-15		10 %, отн.	1 %, отн.	
	i-C ₄ H ₁₀	0,10-0,50		10 %, отн.	4 %, отн.	
	n-C ₄ H ₁₀	0,10-0,50		10 %, отн.	4 %, отн.	
	CH ₄	ост.				

Стандартные образцы состава газовых смесей – имитаторы природного газа (ИПГ-1 – ИПГ-9)

			Номинальные значе-	Пределы до-		
	Индекс	Компонентный	ния молярной доли	пускаемого	Пределы допускаемой	Разряд
Номер по реестру ЭМ	СО	состав	определяемого ком-	относительного	погрешности	азр
		0001415	понента,	отклонения	$\pm\Delta$	P
06.01.706 (ΓCO 8218-2002)	ИПГ-1	CH ₄	% 99,97-75	±Д -	$\Delta = -0.03 \cdot X + 3.03$	1
00.01.700 (1 00 0210 2002)	11111	C ₂ H ₆	0,005-15	20	$\Delta = 0.02 \cdot X + 0.0004$	
		C ₃ H ₈	0,005-6	20	$\Delta = 0.03 \cdot X + 0.0002$	
		изо-С ₄ Н ₁₀	0,0020-4	20	$\Delta = 0.04 \cdot X + 0.0002$	
		н-С ₄ Н ₁₀	0,0020-4	20	$\Delta = 0.04 \cdot X + 0.0002$	
		нео-С ₅ Н ₁₂ *	0,0010-0,05	20	$\Delta = 0.05 \cdot X + 0.0002$	
		изо-С ₅ Н ₁₂	0,0010-0,5	20	$\Delta = 0.04 \cdot X + 0.0001$	
		н-С ₅ Н ₁₂	0,0010-0,5	20	$\Delta = 0.04 \cdot X + 0.0001$	
		CO ₂	0,005-4	20	$\Delta = 0.03 \cdot X + 0.0006$	
		N ₂	0,005-10	20	$\Delta = 0.02 \cdot X + 0.0007$	
		O_2	0,005-2,0	20	$\Delta = 0.03 \cdot X + 0.0011$	
06.01.707 (ΓCO 8219-2002)	ИПГ-2	CH ₄	99,97-75	-	$\Delta = -0.03 \cdot X + 3.03$	1
		C_2H_6	0,005-15	20	$\Delta = 0.02 \cdot X + 0.0004$	
		C ₃ H ₈	0,005-6	20	$\Delta = 0.03 \cdot X + 0.0002$	
		изо-С ₄ Н ₁₀	0,0020-4	20	$\Delta = 0.04 \cdot X + 0.0002$	
		н-С ₄ Н ₁₀	0,0020-4	20	$\Delta = 0.04 \cdot X + 0.0002$	
		нео-С ₅ Н ₁₂ *	0,0010-0,05	20	$\Delta = 0.05 \cdot X + 0.0002$	
		изо-С ₅ Н ₁₂	0,0010-0,5	20	$\Delta = 0.04 \cdot X + 0.0001$	
		н-С ₅ Н ₁₂	0,0010-0,5	20	$\Delta = 0.04 \cdot X + 0.0001$	
		н-С ₆ Н ₁₄	0,0010-0,5	20	$\Delta = 0.04 \cdot X + 0.0001$	
		CO_2	0,005-4	20	$\Delta = 0.03 \cdot X + 0.0006$	
		N ₂	0,005-10	20	$\Delta = 0.02 \cdot X + 0.0007$	
		O_2	0,005-2,0	20	$\Delta = 0.03 \cdot X + 0.0011$	
06.01.708 (ΓCO 8220-2002)	ИПГ-3	CH ₄	99,97-75	-	$\Delta = -0.03 \cdot X + 3.03$	1
,		C_2H_6	0,005-15	20	$\Delta = 0.02 \cdot X + 0.0004$	
		C_3H_8	0,005-6	20	$\Delta = 0.03 \cdot X + 0.0002$	
		изо- С ₄ Н ₁₀	0,0020-4	20	$\Delta = 0.04 \cdot X + 0.0002$	
		н- С ₄ Н ₁₀	0,0020-4	20	$\Delta = 0.04 \cdot X + 0.0002$	
		нео- С ₅ Н ₁₂ *	0,0010-0,05	20	$\Delta = 0.05 \cdot X + 0.0002$	
		изо- С ₅ Н ₁₂	0,0010-0,5	20	$\Delta = 0.04 \cdot X + 0.0001$	
		н- С ₅ Н ₁₂	0,0010-0,5	20	$\Delta = 0.04 \cdot X + 0.0001$	
		н- С ₆ Н ₁₄	0,0010-0,5	20	$\Delta = 0.04 \cdot X + 0.0001$	
		н- С ₇ Н ₁₆	0,0010-0,1	20	$\Delta = 0.04 \cdot X + 0.0001$	
		CO_2	0,005-4	20	$\Delta = 0.03 \cdot X + 0.0006$	
		N_2	0,005-10	20	$\Delta = 0.02 \cdot X + 0.0007$	
		O_2	0,005-2,0	20	$\Delta = 0.03 \cdot X + 0.0011$	
06.01.709 (ΓCO 8221-2002)	ИПГ-4	CH ₄	99,97-75	-	$\Delta = -0.03 \cdot X + 3.03$	1
		C_2H_6	0,005-15	20	$\Delta = 0.02 \cdot X + 0.0004$	
		C_3H_8	0,005-6	20	$\Delta = 0.03 \cdot X + 0.0002$	
		изо-С ₄ Н ₁₀	0,0020-4	20	$\Delta = 0.04 \cdot X + 0.0002$	
		н-С ₄ Н ₁₀	0,0020-4	20	$\Delta = 0.04 \cdot X + 0.0002$	
		нео-С ₅ Н ₁₂ *	0,0010-0,05	20	$\Delta = 0.05 \cdot X + 0.0002$	
		изо-С ₅ Н ₁₂	0,0010-0,5	20	$\Delta = 0.04 \cdot X + 0.0001$	
		н-С ₅ Н ₁₂	0,0010-0,5	20	$\Delta = 0.04 \cdot X + 0.0001$	
		н-С ₆ Н ₁₄	0,0010-0,5	20	$\Delta = 0.04 \cdot X + 0.0001$	
		н-С ₇ Н ₁₆	0,0010-0,1	20	$\Delta = 0.04 \cdot X + 0.0001$	
		н-С ₈ Н ₁₈	0,0010-0,05	20	$\Delta = 0.08 \cdot X + 0.0007$	
		CO_2	0,005-4	20	$\Delta = 0.03 \cdot X + 0.0006$	
		N_2	0,005-10	20	$\Delta = 0.02 \cdot X + 0.0007$	
		O_2	0,005-2,0	20	$\Delta = 0.03 \cdot X + 0.0011$	

Служба эталонных материалов ФГУП "ВНИИМ им. Д.И. Менделеева"

	Индекс	Компонентный	Номинальные значе- ния молярной доли	Пределы до- пускаемого	Пределы допускаемой	ДКС
Номер по реестру ЭМ	СО	состав	определяемого ком- понента, %	относительного отклонения ±Д	погрешности $\pm \Delta$	Разряд
06.01.710 (ΓCO 8222-2002)	ИПГ-5	CH ₄	99,97-75	-	$\Delta = -0.03 \cdot X + 3.03$	1
,		C_2H_6	0,005-15	20	$\Delta = 0.02 \cdot X + 0.0004$	
		C_3H_8	0,005-6	20	$\Delta = 0.03 \cdot X + 0.0002$	
		изо-С ₄ Н ₁₀	0,0020-4	20	$\Delta = 0.04 \cdot X + 0.0002$	
		н-С ₄ Н ₁₀	0,0020-4	20	$\Delta = 0.04 \cdot X + 0.0002$	
		нео-С ₅ Н ₁₂ *	0,0010-0,05	20	$\Delta = 0.05 \cdot X + 0.0002$	
		изо-С ₅ Н ₁₂	0,0010-0,5	20	$\Delta = 0.04 \cdot X + 0.0001$	
		н-С ₅ Н ₁₂	0,0010-0,5	20	$\Delta = 0.04 \cdot X + 0.0001$	
		н-С ₆ Н ₁₄	0,0010-0,5	20	$\Delta = 0.04 \cdot X + 0.0001$	
		н-С7Н16	0,0010-0,1	20	$\Delta = 0.04 \cdot X + 0.0001$	
		н-С ₈ Н ₁₈	0,0010-0,05	20	$\Delta = 0.08 \cdot X + 0.0007$	
		н-С ₉ Н ₂₀	0,0010-0,025	20	$\Delta = 0.08 \cdot X + 0.0007$	
		CO_2	0,005-4	20	$\Delta = 0.03 \cdot X + 0.0006$	
		N_2	0,005-10	20	$\Delta = 0.02 \cdot X + 0.0007$	
		O_2	0,005-2,0	20	$\Delta = 0.03 \cdot X + 0.0011$	
06.01.711 (ΓCO 8223-2002)	ИПГ-6	CH ₄	99,97-75	-	$\Delta = -0.03 \cdot X + 3.03$	1
		C_2H_6	0,005-15	20	$\Delta = 0.02 \cdot X + 0.0004$	
		C_3H_8	0,005-6	20	$\Delta = 0.03 \cdot X + 0.0002$	
		изо-С ₄ Н ₁₀	0,0020-4	20	$\Delta = 0.04 \cdot X + 0.0002$	
		н-С ₄ Н ₁₀	0,0020-4	20	$\Delta = 0.04 \cdot X + 0.0002$	
		нео-С ₅ Н ₁₂ *	0,0010-0,05	20	$\Delta = 0.05 \cdot X + 0.0002$	
		изо-С ₅ Н ₁₂	0,0010-0,5	20	$\Delta = 0.04 \cdot X + 0.0001$	
		н-С ₅ Н ₁₂	0,0010-0,5	20	$\Delta = 0.04 \cdot X + 0.0001$	
		н-С ₆ Н ₁₄	0,0010-0,5	20	$\Delta = 0.04 \cdot X + 0.0001$	
		н-С ₇ Н ₁₆	0,0010-0,1	20	$\Delta = 0.04 \cdot X + 0.0001$	
		н-С ₈ Н ₁₈	0,0010-0,05	20	$\Delta = 0.08 \cdot X + 0.0007$	
		н-С ₉ Н ₂₀	0,0010-0,025	20	$\Delta = 0.08 \cdot X + 0.0007$	
		н-С ₁₀ Н ₂₂	0,0010-0,01	20	$\Delta = 0.08 \cdot X + 0.0007$	
		CO ₂	0,005-4	20	$\Delta = 0.03 \cdot X + 0.0006$	
		N_2	0,005-10	20	$\Delta = 0.02 \cdot X + 0.0007$	
06.01.510.0500.0001.0000	******	O ₂	0,005-2,0	20	$\Delta = 0.03 \cdot X + 0.0011$	
06.01.712 (ΓCO 8224-2002)	ИПГ-7	CH ₄	99,97-75	-	$\Delta = -0.03 \cdot X + 3.03$	1
		C ₂ H ₆	0,005-15	20	$\Delta = 0.02 \cdot X + 0.0004$	
		C ₃ H ₈	0,005-6	20	$\Delta = 0.03 \cdot X + 0.0002$	
		изо-С ₄ Н ₁₀	0,0020-4	20	$\Delta = 0.04 \cdot X + 0.0002$	
		н-С ₄ Н ₁₀	0,0020-4	20	$\Delta = 0.04 \cdot X + 0.0002$	
		нео-C ₅ H ₁₂ *	0,0010-0,05	20	$\Delta = 0.05 \cdot X + 0.0002$	
		изо-С ₅ Н ₁₂	0,0010-0,5	20	$\Delta = 0.04 \cdot X + 0.0001$	
		н-С ₅ Н ₁₂	0,0010-0,5 0,0010-0,5	20 20	$\Delta = 0.04 \cdot X + 0.0001$ $\Delta = 0.04 \cdot X + 0.0001$	
		н-С ₆ Н ₁₄	0,0010-0,3		$\Delta = 0.04 \cdot X + 0.0001$ $\Delta = 0.04 \cdot X + 0.0001$	
		н-С ₇ H ₁₆ н-С ₈ H ₁₈	0,0010-0,1	20 20	$\Delta = 0.04 \cdot X + 0.0001$ $\Delta = 0.08 \cdot X + 0.0007$	
		н-С ₈ Н ₁₈ н-С ₉ Н ₂₀	0,0010-0,03	20	$\Delta = 0.08 \cdot X + 0.0007$ $\Delta = 0.08 \cdot X + 0.0007$	
		н-С ₁₀ H ₂₂	0,0010-0,023	20	$\Delta = 0.08 \cdot X + 0.0007$ $\Delta = 0.08 \cdot X + 0.0007$	
		C ₆ H ₆	0,0010-0,01	20	$\Delta = 0.08 \cdot X + 0.0007$ $\Delta = 0.08 \cdot X + 0.0007$	
		C_6H_6 $C_6H_5CH_3$	0,0010-0,05	20	$\Delta = 0.08 \cdot X + 0.0007$ $\Delta = 0.08 \cdot X + 0.0007$	
		CO_2	0,0010-0,03	20	$\Delta = 0.08 \cdot X + 0.0007$ $\Delta = 0.03 \cdot X + 0.0006$	
		N_2	0,005-10	20	$\Delta = 0.03 \text{ X} + 0.0000$ $\Delta = 0.02 \cdot \text{X} + 0.0007$	
		O_2	0,005-2,0	20	$\Delta = 0.03 \cdot X + 0.0011$	

190005, Санкт-Петербург, Московский пр., 19

-			Номинальные значе-	Пределы до-		
	***	T.C	ния молярной доли	пускаемого	Пределы допускаемой	Ħ
Номер по реестру ЭМ	Индекс	Компонентный	определяемого ком-	относительного	погрешности	Разряд
	CO	состав	понента,	отклонения	$\pm\Delta$	Pa
			%	±Д		
06.01.713 (ΓCO 8225-	ИПГ-8	CH ₄	99,97-75	-	$\Delta = -0.03 \cdot X + 3.03$	1
2002)		C_2H_6	0,005-15	20	$\Delta = 0.02 \cdot X + 0.0004$	
		C_3H_8	0,005-6	20	$\Delta = 0.03 \cdot X + 0.0002$	
		изо-С ₄ Н ₁₀	0,0020-4	20	$\Delta = 0.04 \cdot X + 0.0002$	
		н-С ₄ Н ₁₀	0,0020-4	20	$\Delta = 0.04 \cdot X + 0.0002$	
		нео-С ₅ Н ₁₂ *	0,0010-0,05	20	$\Delta = 0.05 \cdot X + 0.0002$	
		изо-С ₅ Н ₁₂	0,0010-0,5	20	$\Delta = 0.04 \cdot X + 0.0001$	
		н-С ₅ Н ₁₂	0,0010-0,5	20	$\Delta = 0.04 \cdot X + 0.0001$	
		н-С ₆ Н ₁₄	0,0010-0,5	20	$\Delta = 0.04 \cdot X + 0.0001$	
		н-С7Н16	0,0010-0,1	20	$\Delta = 0.04 \cdot X + 0.0001$	
		н-С ₈ Н ₁₈	0,0010-0,05	20	$\Delta = 0.08 \cdot X + 0.0007$	
		н-С ₉ Н ₂₀	0,0010-0,025	20	$\Delta = 0.08 \cdot X + 0.0007$	
		$H-C_{10}H_{22}$	0,0010-0,01	20	$\Delta = 0.08 \cdot X + 0.0007$	
		C_6H_6	0,0010-0,05	20	$\Delta = 0.08 \cdot X + 0.0007$	
		C ₆ H ₅ CH ₃	0,0010-0,05	20	$\Delta = 0.08 \cdot X + 0.0007$	
		CH ₃ OH	0,0010-0,05	20	$\Delta = 0.08 \cdot X + 0.0007$	
		CO_2	0,005-4	20	$\Delta = 0.03 \cdot X + 0.0006$	
		N_2	0,005-10	20	$\Delta = 0.02 \cdot X + 0.0007$	
		O_2	0,005-2,0	20	$\Delta = 0.03 \cdot X + 0.0011$	
06.01.714 (ΓCO 8226-	ИПГ-9	CH ₄	99,97-75	-	$\Delta = -0.03 \cdot X + 3.03$	1
2002)		C_2H_6	0,005-15	20	$\Delta = 0.02 \cdot X + 0.0004$	
		C_3H_8	0,005-6	20	$\Delta = 0.03 \cdot X + 0.0002$	
		изо-С ₄ Н ₁₀	0,0020-4	20	$\Delta = 0.04 \cdot X + 0.0002$	
		н-С ₄ Н ₁₀	0,0020-4	20	$\Delta = 0.04 \cdot X + 0.0002$	
		нео-С ₅ Н ₁₂ *	0,0010-0,05	20	$\Delta = 0.05 \cdot X + 0.0002$	
		изо-С ₅ Н ₁₂	0,0010-0,5	20	$\Delta = 0.04 \cdot X + 0.0001$	
		н-С ₅ Н ₁₂	0,0010-0,5	20	$\Delta = 0.04 \cdot X + 0.0001$	
		н-С ₆ Н ₁₄	0,0010-0,5	20	$\Delta = 0.04 \cdot X + 0.0001$	
		н-С ₇ Н ₁₆	0,0010-0,1	20	$\Delta = 0.04 \cdot X + 0.0001$	
		н-С ₈ Н ₁₈	0,0010-0,05	20	$\Delta = 0.08 \cdot X + 0.0007$	
		н-С ₉ Н ₂₀	0,0010-0,025	20	$\Delta = 0.08 \cdot X + 0.0007$	
		н-С ₁₀ Н ₂₂	0,0010-0,01	20	$\Delta = 0.08 \cdot X + 0.0007$	
		C ₆ H ₆	0,0010-0,05	20	$\Delta = 0.08 \cdot X + 0.0007$	
		C ₆ H ₅ CH ₃	0,0010-0,05	20	$\Delta = 0.08 \cdot X + 0.0007$	
		CH ₃ OH	0,0010-0,05	20	$\Delta = 0.08 \cdot X + 0.0007$	
		H ₂	0,0010-0,5	20	$\Delta = 0.04 \cdot X + 0.0001$	
		Не	0,0010-0,5	20	$\Delta = 0.04 \cdot X + 0.0001$	
		CO_2	0,005-4	20	$\Delta = 0.03 \cdot X + 0.0006$	
		N_2	0,005-10	20	$\Delta = 0.02 \cdot X + 0.0007$	
		O_2	0,005-2,0	20	$\Delta = 0.03 \cdot X + 0.0011$	

06.02 Газовые смеси – эталоны сравнения

Используются для передачи размера единицы молярной доли компонентов от Государственного первичного эталона (ГЭТ 154-01) нижестоящим высокоточным рабочим средствам измерений (газоанализаторам) содержания компонентов в газовых средах в соответствии с государственной поверочной схемой (ГОСТ 8.578-2002).

Регистрационный	Определяемый и фоновый	Молярная доля определяемого	Границы относительной
номер	компоненты	компонента, %	погрешности (Р=0,99), %
06.02.001	O_2+N_2	0,0050-0,49	±(5,0-0,5)
06.02.002	O_2+N_2	0,5-9,9	±0,2
06.02.003	O_2+N_2	10-25	± 0,02 (aбc.)
06.02.004	CO+N ₂	0,0010-0,050	±1,0
06.02.005	CO+N ₂	0,10-0,49	±0,5
06.02.006	CO+N ₂	0,5-10	±0,2
06.02.007	CO_2+N_2	0,005-0,10	±1,0
06.02.008	CH_4+N_2	0,0010-0,49	±1,0
06.02.009	CH ₄ +N ₂	0,5-2,0	±0,5
06.02.010	$C_3H_8+N_2$	0,002-0,49	±1,0
06.02.011	C ₃ H ₈ +N ₂	0,5-1,0	±0,5
06.02.012	$C_6H_{14}+N_2$	0,0020-0,49	±(5,0-0,6)
06.02.013	SO ₂ +N ₂	0,0010-0,49	±1,5
06.02.014	NO+N ₂	0,00010-0,49	±(2,0-1,0)
06.02.015	NO ₂ +N ₂	0,005-0,49	±1,5
06.02.016	H ₂ S+N ₂	0,002-0,49	±1,5
06.02.017	NH ₃ +N ₂	0,010-0,49	±2
06.02.018	СО ₂ +N ₂ /воздух	0,001-30	±(0,2-0,15)
06.02.019	NO+N ₂	1,0-2,5	±(0,6-0,3)
06.02.020	NO ₂ +N ₂ /воздух	0,5-2,5	±(1,0-0,3)
06.02.021	SO ₂ +N ₂	0,5-2,5	±1,0
06.02.022	C_6H_{14} +воздух	0,01-0,5	±(1,5-1,0)
06.02.023	$C_6H_6+N_2/воздух$	$(0.005-1)\cdot 10^{-4}$	±(5-2,0)
06.02.024	С ₆ Н ₅ СН ₃ +N ₂ /воздух	$(0,005-1)\cdot 10^{-4}$	±(5-2,0)
06.02.025	C ₂ H ₅ OH+N ₂	0,002-0,01	±(5-1,0)
06.02.026	C ₂ H ₅ OH+N ₂	0,01-0,09	±1,0
06.02.027	СН ₄ +воздух	0,5-2,3	±0,2
06.02.028	С ₃ Н ₈ +воздух	0,5-1,0	±(0,4-0,2)
06.02.029	CO	0,5-5	±0,5
	CO_2	4-16	±0,5
	C_3H_8	0,01-0,3	±0,5
	N ₂ /воздух	ост.	,
06.02.030	CF ₄	0,0010-10	±(2,0-1,0)
	SF_6	0,0010-10	±(2,0-1,0)
	$C_2\tilde{F}_6$	0,0010-10	$\pm (2,0-1,0)$
	CHF ₃	0,0010-10	±(3-1,0)
	NF ₃	0,0010-10	±(5-1,0)
	N_2	ост.	

Служба эталонных материалов ФГУП "ВНИИМ им. Д.И. Менделеева"

190005, Санкт-Петербург, Московский пр., 19

Регистрационный	Определяемый и фоновый	Молярная доля определяемого	Границы относительной
номер	компоненты	компонента, %	погрешности (Р=0,99), %
06.02.031	C ₆ H ₆	(0,05-100) млн ⁻¹	±(5-3)
	CHCl ₃	(0,05-100) млн ⁻¹	±(5-3)
	CH ₂ Cl ₂	$(0,05-100)$ млн $^{-1}$	±(5-3)
	C ₂ HCl ₃	$(0,05-100)$ млн $^{-1}$	±(5-3)
	C_2Cl_4	$(0,05-100)$ млн $^{-1}$	±(5-3)
	$C_2H_4Cl_2$	$(0,05-100)$ млн $^{-1}$	±(6-4)
	C ₂ H ₃ Cl	(0,05-100) млн ⁻¹	±(5-3)
	N ₂ /воздух	ост.	
06.02.32	$C_6H_{14}+He/CH_4$	0,0020-0,40	± (2,0-1,0)

Смеси приготавливаются в баллонах гравиметрическим методом вместимостью от 2 до 10 дм³ из газов особой чистоты. С целью обеспечения долговременной стабильности эталонов, внутренняя поверхность баллона подвергается специальной обработке.

Метрологические характеристики эталонов сравнения подтверждены результатами международных сличений, проводившихся в период с 1995 по 2007 г.

Относительное отклонение воспроизводимого значения молярной доли компонента от значения, заданного Заказчиком, не более ± 10 %.

Выпускаются по Хд 2.706.136, Хд 2.706.138, Хд 2.706.141 и др.

Гарантийные сроки годности 0,5-2 года.

06.03 Эталонные образцы природного газа

Предназначены для градуировки и поверки лабораторных и промышленных хроматографов, применяемых при определении компонентного состава природных (попутных) газов, в том числе, при их сертификации.

Регистраци- онный номер	Индекс образца	Описание образца	Вмести- мость бал- лона, дм ³
06.03.002	ЭОПГ-Б	Искусственная многокомпонентная газовая смесь заданного состава в баллоне, имитирующая природный газ с	
		углеводородами до C_8	4-10
06.03.003	ЭОПГ-В	Искусственная многокомпонентная газовая смесь задан-	
		ного состава в баллоне, имитирующая природный газ с	
		углеводородами до С ₁₀	4-40

Значения молярной доли компонентов в эталонных образцах устанавливаются на комплексе газохроматографической аппаратуры, входящей в состав Государственного первичного эталона единицы молярной доли компонентов в газовых средах (ГЭТ 154-01).

Служба эталонных материалов ФГУП "ВНИИМ им. Д.И. Менделеева"

ЭОПГ-Б

Определяемый	Молярная доля определяемого	Границы относительной
компонент	компонента, %	погрешности $\pm \delta$ (P=0,99), %
Метан	99,96-73,0	0,002-0,18
Этан	0,003-11,0	2,0-1,0
Пропан	0,0005-3,0	8-1,2
Изобутан	0,0005-5,0	6-1,0
Нормальный бутан	0,0005-2,0	6-1,6
Неопентан *	0,0005-0,05	14-4
Изопентан	0,001-0,4	5-2,0
Нормальный пентан	0,001-0,3	6-2,5
Нормальный гексан	0,001-0,15	7-3
Нормальный гептан *	0,0005-0,15	10-2,0
Нормальный октан *	0,001-0,03	8-4
Бензол *	0,002-0,03	6-4
Толуол *	0,002-0,03	6,5-4
Диоксид углерода	0,005-0,6	6-1,0
Кислород	0,004-0,5	25-1,4
Азот	0,005-4,0	12-1,5

^{*} газовые смеси, содержащие данные компоненты, изготавливаются по специальному заказу.

ЭОПГ-В

Определяемый	Молярная доля определяемого	Границы абсолютной
компонент	компонента, %	погрешности Δ** (P=0,99)
Метан	75-99,5	$\Delta = -0.0118 \cdot X + 1.1879$
Этан	0,005-15	$\Delta = 0.005 \cdot X + 0.0005$
Пропан	0,005-6	$\Delta = 0.005 \cdot X + 0.0005$
Изобутан	0,0020-4	$\Delta = 0.020 \cdot X + 0.0002$
Нормальный бутан	0,0020-4	$\Delta = 0.020 \cdot X + 0.0002$
Неопентан *	0,0005-0,05	$\Delta = 0.04 \cdot X + 0.0001$
Изопентан	0,0010-2	$\Delta = 0.025 \cdot X + 0.0001$
Нормальный пентан	0,0010-2	$\Delta = 0.025 \cdot X + 0.0001$
Нормальный гексан *	0,0010-0,5	$\Delta = 0.025 \cdot X + 0.0001$
Нормальный гептан *	0,0010-0,5	$\Delta = 0.05 \cdot X + 0.0001$
Нормальный октан *	0,0010-0,05	$\Delta = 0.05 \cdot X + 0.0001$
Нормальный нонан *	0,0010-0,025	$\Delta = 0.05 \cdot X + 0.0001$
Нормальный декан *	0,0010-0,010	$\Delta = 0.05 \cdot X + 0.0001$
Бензол *	0,0010-0,05	$\Delta = 0.05 \cdot X + 0.0001$
Толуол *	0,0010-0,05	$\Delta = 0.05 \cdot X + 0.0001$
Углекислый газ	0,005-4	$\Delta = 0.020 \cdot X + 0.0005$
Азот	0,005-10	$\Delta = 0.015 \cdot X + 0.0005$
Кислород *	0,003-2	$\Delta = 0.025 \cdot X + 0.0005$
Метиловый спирт *	0,0010-0,5	$\Delta = 0.04 \cdot X + 0.0001$
Гелий *	0,0010-0,5	$\Delta = 0.035 \cdot X + 0.0001$
Водород *	0,0010-0,5	$\Delta = 0.035 \cdot X + 0.0001$

^{*} газовые смеси, содержащие данные компоненты, изготавливаются по специальному заказу.

Служба эталонных материалов ФГУП "ВНИИМ им. Д.И. Менделеева"

190005, Санкт-Петербург, Московский пр., 19

тел: (812) 315-11-45 E-mail:info@vniim.ru факс: (812) 327-97-76 http://www.vniim.ru

^{**} где X – действительное (указываемое в паспорте) значение молярной доли определяемого компонента.

В сопроводительных документах на эталонные образцы, наряду со значениями молярной доли определяемых компонентов, могут приводиться значения объемной доли, а также значения физических величин, характеризующих его свойства. Указанные значения (приведенные к температуре $20.0\,^{\circ}$ С и давлению $101.3\,^{\circ}$ кПа) рассчитываются по ГОСТ $22667-82\,^{\circ}$ и ГОСТ 30319.1-96.

Физическая величина	Диапазон значений	Границы относительной погрешности $\pm \delta$ (P=0,99), %
Теплота сгорания, ккал/м ³		
низшая	7600-10300	0,1-0,8
высшая	8280-11310	
Относительная плотность		
газа	0,550-0,790	0,1-1,0

Срок годности 1 год.

06.04 – 06.05 Источники микропотоков газов и паров

Источники микропотоков (ИМ) являются сменными элементами динамических генераторов газовых смесей, применяемых для градуировки и поверки хроматографов и газоанализаторов, а также для контроля погрешности методик количественного химического анализа воздуха рабочей зоны.

ИМ представляют собой закрытые сосуды, заполненные чистым веществом (жидкостью или сжиженным газом). При обдувании ИМ азотом (воздухом) вещество диффундирует в газовый поток, формируя газовую смесь с заданным значением массовой концентрации вещества. Производительность ИМ зависит от температуры и параметров проницаемой части сосуда.

Конструктивные исполнения:

- А газопроницаемая полимерная трубка длиной от 20 до 120 мм,
- Б фторопластовая ампула,
- В фторопластовая ампула в металлическом кожухе,
- Γ стеклянный или металлический резервуар с внешней газопроницаемой полимерной трубкой длиной от 5 до 50 мм,
 - Д металлический резервуар с газопроницаемой мембраной,
 - Е металлический резервуар с внутренней газопроницаемой полимерной трубкой.
 - ИМ исполнений Г, Д и Е характеризуются увеличенным сроком непрерывной работы.
- ИМ хранятся и транспортируются в герметичных пластмассовых или металлических контейнерах. Поставляются с паспортом и инструкцией по применению.
- В зависимости от функции по Государственной поверочной схеме для средств измерений содержания компонентов в газовых средах (ГОСТ 8.578-2002) ИМ подразделяются на:
 - рабочие эталоны первого разряда;
 - эталоны сравнения.

ИМ – рабочие эталоны

Регистрационный номер	Вещество	Исполнение	Номинальное значение температуры $(T_{\scriptscriptstyle H})$, ${}^{\rm o}C$	Диапазон значений производительности при $T_{ m H}$, мкг/мин
06.04.001	Аммиак	А, Г, Д	30	0,1-2
		А, Г, Д	35	0,5-3
		А, Г, Д	40	2-8
06.04.002	Ацетон	А, Б	80	0,5-4
		А, Б	90	4-7
		А, Б	100	7-10
		А, Б	110	10-20
06.04.003	Ацетонитрил	А, Б	80	1-4
	_	А, Б	100	4-10
06.04.004	Бензол	А, Б	50	0,1-1
		А, Б	80	1-4
		А, Б	100	4-15
		А, Б	110	15-30
06.04.005	Бутанол	А, Б	80	0,3-2
		А, Б	100	2-4
		А, Б	120	4-7
		А, Б	130	7-10

Служба эталонных материалов ФГУП "ВНИИМ им. Д.И. Менделеева"

190005, Санкт-Петербург, Московский пр., 19

тел: (812) 315-11-45 E-mail:info@vniim.ru факс: (812) 327-97-76 http://www.vniim.ru

Регистрационный номер	Вещество	Исполнение	Номинальное значение температуры (T _н), °C	Диапазон значений производительности
06.04.006	Бутилацетат	А, Б	80	при Т _н , мкг/мин 0,3-2
00.04.000	Бутилацетат	А, Б	100	2-4
		А, Б	110	4-10
		А, Б		10-20
		А, Б	120	
0604007		А, Б А, Б	140	20-50
06.04.007	Бутилмеркаптан	А, ь	80	0,6-2
		А, Б	90	2-5
		А, Б	100	4-10
06.04.008	Гексан	А, Б	80	0,5-2
		А, Б	90	2-6
		А, Б	100	6-10
		А, Б	110	10-30
06.04.009	Гептан	A	80	0,5-2
		A	90	2-6
		Б	100	13-15
		A	110	6-15
		А, Б	120	15-30
06.04.010	Декан	А, Б	130	8-10
00.04.010	декан	А, Б	150	10-30
06.04.011	Пинатичнатична		70	
00.04.011	Диметилсульфид	А, Б		0,3-4
		Б	80	3-5
		A	90	1-5
06.04.012	Диметилдисульфид	А, Б	70	0,1-0,6
		А, Б	100	0,5-6
06.04.013	Диоксид азота	А, Г, Д	30	0,1-6
		А, Г, Д	35	0,2-10
		Д Г	40	0,3-2
			40	1-15
06.04.014	Диоксид серы	А, Г, Д	30	0,1-6
		А, Г, Д	35	0,2-8
		А, Г, Д	40	0,3-12
06.04.015	Дихлорэтан	А, Б	80	0,5-3
		А, Б	90	3-6
		А, Б	100	6-10
		А, Б	110	10-30
06.04.016	Диэтиловый эфир	А, Б	30	0,1-1
00.01.010	дизтыювый эфир	11, 1	100	1-25
06.04.017	Додекан	А, Б	130	1-5
00.04.017	додекан	А, Б	150	10-30
06.04.018	Изопропанол	А, Б	80	0,5-1
00.04.018	1130пропанол	А, Б	90	1-2
		А, Б	100	2-5
				2-3 5-15
06.04.010	H	А, Б Б	110	
06.04.019	Изопропилбензол		100	1-1,5
060400	(кумол)	А, Б А, Б	120	2-8
06.04.020	Изопропилмеркаптан	А, Б	70	0,8-1,5
			90	1,5-8
			100	5-15
06.04.021	м-ксилол	А, Б	50	0,1-0,5
		А, Б	80	0,5-2
		А, Б	100	2-7
		А, Б	120	7-30

Регистрационный номер	Вещество	Исполнение	Номинальное значение температуры (T _н), °C	Диапазон значений производительности при $T_{\rm H}$, мкг/мин
06.04.022	Метанол	А, Б	80	0,5-3
00.04.022	Wetanosi	А, Б	90	3-6
		А, Б	100	6-10
		А, Б	110	10-20
06.04.023	Метилмеркаптан	А, Б	40	0,3-2
***************************************		А, Б	50	2-5
		А, Б	70	5-10
06.04.024	Октан	А, Б	80	0,5-2
		А, Б	100	2-10
		А, Б	110	8-15
		Б	130	35-45
06.04.025	Нафталин	A	130	1-12
06.04.026	Нонан	А, Б	120	5-12
06.04.027	о-ксилол	А, Б	50	0,1-0,5
		А, Б	80	0,5-2
		А, Б	100	2-7
		А, Б	120	7-30
06.04.028	п-ксилол	А, Б	50	0,1-0,5
		А, Б	80	0,5-2
		А, Б	100	2-7
		А, Б	120	7-30
06.04.029	Пентан	А, Б	80	0,5-4
		А, Б	90	2-16
06.04.030	Сероводород	А, Г, Д	30	0,1-6
		А, Г, Д	35	0,2-8
06.04.031	Сероуглерод	А, Б	60	2-10
		А, Б	80	10-15
06.04.032	Тетрахлорэтилен	А, Б	80	2-8
		А, Б	90	8-15
		А, Б	100	15-30
06.04.033	Толуол	А, Б	50	0,1-0,5
		А, Б	80	0,5-2
		А, Б	100	2-7
		А, Б	120	7-30
06.04.034	Тридекан	А, Б	130	1-3
		А, Б	150	10-20
06.04.035	Трихлорэтилен	А, Б	70	1-7
06.04.036	Ундекан	А, Б	130	4-7
06.04.037	Фенол	A	100	0,5-2
		A	130	2-8
06.04.038	Формальдегид	A	80	0,1-0,5
		A	90	0,5-2,5
06.04.039	Фтористый водород	А, Б, Г	30	0,1-5
		А, Б	40	0,2-10
			60	5-15
06.04.039	Хлор	Α, Γ	30	0,1-15
		В	30	0,2-10
0604012		Α, Γ	35	0,5-15
06.04.040	Хлорбензол	А, Б	80	0,2-2
		А, Б	100	2-10
06.04.041	Хлористый водород	Д	30	0,1-1
			35	0,5-3
06.04.042	Хлористый водород	Е	30	1-10
			35	1-15

Регистрационный номер	Вещество	Исполнение	Номинальное значение температуры (T _н), °C	Диапазон значений производительности при $T_{\rm H}$, мкг/мин
06.04.043	Хлористый метилен	А, Б	50	0,5-2
	•	А, Б	60	2-4
06.04.045	Хлористый этил	А, Б	40	0,3-2
		A	50	2-10
		Б	50	2-15
06.04.046	Хлороформ	А, Б	80	0,2-2
		А, Б	90	2-15
		А, Б	100	15-30
06.04.047	Циклогексан	А, Б	80	0,5-2
		А, Б	100	2-4
06.04.040	**	А, Б	120	4-15
06.04.048	Циклогексанол	А, Б	80	0,2-2
		А, Б	100	1-5
06.04.040	TT	А, Б	120	5-15
06.04.049	Циклогексанон	А, Б	80	0,2-2 1-4
		А, Б А, Б	100 120	2-10
06.04.050	Четыреххлористый		70	0,6-2
06.04.030		А, Б А, Б	80	1-5
	углерод	А, Б	100	5-30
06.04.051	Этанол	А, Б	80	0,5-3
00.04.031	Этанол	А, Б	90	3-5
		А, Б	100	5-7
		А, Б	120	7-20
06.04.052	Этилацетат	А, Б	80	0,5-3
00.01.032	Этимертит	А, Б	90	3-7
		А, Б	100	6-10
		А, Б	110	10-25
06.04.053	Этилбензол	А, Б	80	0,5-2
		А, Б	100	3-5
		А, Б	120	10-30
06.04.054	Этилмеркаптан	A	60	0,2-1
		A	80	0,5-10
		A	100	1-12
			120	2-20
06.04.055	Пропилмеркаптан	A	60	0,1-1
		A	70	0,8-1,5
		Б	80	0,5-4
		А, Б	90 100	1,5-7,0 5-10
06.04.056	Этилцеллозольв	А, Б Б	100	0,5-1,5
00.04.030	Этилцеллозольв		120	1-7
06.04.057	Уксусная кислота	А, Б А, Б	50	0,1-1
00.04.037	у ксусная кислота	A, D	100	1-15
06.04.058	Вода	A	75,5	1-4
00.04.030	ъυда	A	100	1-4
06.04.059	Сероокись углерода	Д	30	0,1-1
00.01.037	эрооннов утперода		40	1-10
06.04.060	Оксид этилена	А, Б	40	0,1-2
		А, Б	60	2-6
06.04.061	Тиофен	А, Б	50	0,1-0,5
	· T ·	А, Б	60	0,3-1
		А, Б	80	1-4
		А, Б	90	4-10

Регистрационный номер	Вещество	Исполнение	Номинальное значение температуры (T _н), °C	Диапазон значений производительности при $T_{\rm H}$, мкг/мин
06.04.062	Ацетальдегид	А, Б	40	0,1-0,7
		А, Б	50	0,7-4
		А, Б	80	4-8
06.04.063	Метилэтилсульфид	А, Б	50	0,1-0,5
	T T T T T T T T T T T T T T T T T T T	А, Б	60	0,5-2
		А, Б	70	2-4
		А, Б	80	4-10
06.04.064	Диметилметилфосфонат	А, Б	80	0,05-0,3
		А, Б	100	0,3-1
		А, Б	120	1-5
06.04.065	Трибутилфосфат	А, Б	80	0,03-0,3
		А, Б	100	0,1-0,5
		,	120	0,5-2
06.04.066	Диизопропилметил-	А, Б	80	0,03-0,3
	фосфонат	А, Б	100	0,1-0,5
			120	0,5-2
06.04.067	Пропанол	А, Б	80	0,5-1
	•	А, Б	90	1-2
		А, Б	100	2-5
		А, Б	110	2-15
06.04.068	Изобутанол	А, Б	80	0,3-2
		А, Б	90	2-4
		А, Б	120	4-7
		А, Б	130	7-10
06.04.069	Изопентан	А, Б	50,0	0,1-0,6
		А, Б	60,0	0,5-2
		А, Б	70,0	2-6
		А, Б	80,0	5-12
		А, Б	90,0	10-20
06.04.070	Диметилформамид	А, Б	80,0	0,3-1
		А, Б	90,0	1-3
		А, Б	110,0	3-10
06.04.071	Моноэтаноламин	А, Б	70,0	0,1-0,3
		А, Б	90,0	0,3-1
		А, Б	100,0	1-5
06.04.072	2,6 толуилендиизоцианат	A	40	0,1-0,5
			80	0,2-2
06.04.073	2,4 толуилендиизоцианат	A	40	0,1-0,5
			80	0,2-2
06.04.074	Бром	A	30	0,2-1
			35	1-4

Примечание:

Служба эталонных материалов ФГУП "ВНИИМ им. Д.И. Менделеева"

^{1.} По требованию заказчиков ИМ могут быть аттестованы при значениях температуры, отличных от номинального (изменение температуры на 1 °C приводит к изменению производительности на 7-10 %).

^{2.} Указанные в таблице значения производительности ИМ численно равны значениям массовой концентрации вещества в газовой смеси при температуре 20 °C, давлении 101,3 кПа и объемном расходе 1 дм³/мин.

Допускаемое относительное отклонение производительности

ИМ (G) от заданного при заказе значения, % ± 15

Пределы допускаемой относительной погрешности значения G,

воспроизводимого ИМ, %

при G от 0,03 до 1,0 мкг/мин \pm (7-10) при G св. 1,0 до 45 мкг/мин \pm (5-7)

Изготавливаются по ТУ ИБЯЛ. 418319.013-2001.

Зарегистрированы в Государственном реестре средств измерений под номером 15075-06.

Срок годности 0,5-1 год.

Примечание: При непрерывном использовании ИМ (круглосуточное термостатирование и обдув) с производительностью ≥ 10 мкг/мин срок годности ограничивается предельным состоянием (наличие вещества в ИМ менее 10 % от полной вместимости — визуально или от массы).

Эталоны сравнения

Регистрационный номер	Наименование	Исполнение	Номинальное значение температуры $(T_{\rm H})$, ${}^{\circ}{\rm C}$	Диапазон значений производительности при $T_{\rm H}$, мкг/мин	Границы относительной погрешности (Р=0,99), %
06.05.001	Ацетон	А, Б	30-120	0,1-1,0 1,0-20	±5 ±2,0
06.05.002	Бензол	А, Б	30-120	0,1-1,0 1,0-20	±2,5 ±2,0
06.05.003	Толуол	А, Б	50-150	0,1-1,0 1,0-20	±2,5 ±2,0
06.05.004	о-ксилол	А, Б	50-150	0,1-1,0 1,0-20	±5 ±2,0
06.05.005	Бутанол	А, Б	50-150	0,1-1,0 1,0-20	±2,5 ±2,0
06.05.006	Метанол	А, Б	30-120	1,0-20	±2,0
06.05.007	Этилацетат	А, Б	30-120	0,1-1,0 1,0-20	±2,5 ±2,0
06.05.008	Гексан	А, Б	30-120	0,1-1,0 1,0-20	±2,5 ±2,0
06.05.009	Хлороформ	А, Б	30-120	0,1-1,0 1,0-20	±5 ±2,0
06.05.010	Дихлорэтан	А, Б	30-120	0,1-1,0 1,0-20	±5 ±2,0
06.05.011	Сероуглерод	А, Б	30-120	1,0-20	±2,0
06.05.012	м-ксилол	А, Б	50-150	0,1-1,0 1,0-20	±5,0 ±2,0
06.05.013	п-ксилол	А, Б	50-150	0,1-1,0 1,0-20	±5 ±2,0
06.05.014	Диоксид серы	Д	30	0,05-0,1	±3
06.05.015	Диоксид серы	Д А, Г	30-40	0,1-1,0 1,0-10	±2,0 ±1,5
06.05.016	Сероводород	А, Г, Д	30-35	0,1-1,0 1,0-10	±2,0 ±1,5
06.05.017	Диоксид азота	А, Г, Д	30-40	0,05-0,1 0,1-1,0 1,0-10	±3 ±2,0 ±1,5

Служба эталонных материалов ФГУП "ВНИИМ им. Д.И. Менделеева"

190005, Санкт-Петербург, Московский пр., 19

тел: (812) 315-11-45 E-mail:info@vniim.ru факс: (812) 327-97-76 http://www.vniim.ru

Регистрационный номер	Наименование	Исполнение	Номинальное значение температуры (T _н), °C	Диапазон значений производительности при Т _н , мкг/мин	Границы относительной погрешности (Р=0,99), %
06.05.018	Аммиак	А, Г, Д	30-40	0,05-0,1 0,1-1,0 1,0-10	±3 ±2,0 ±1,5
06.05.019	Хлор	Α, Γ	30-35	0,05-0,1 0,1-1,0 1,0-15	±3 ±2,0 ±1,5
06.05.020	Этилмеркаптан	А, Б	50-100	0,1-1,0 1,0-10	±5 ±2,0
06.05.021	Хролистый водород	Д, Е	30-35	1,0-15	±2,5
06.05.022	Фтористый водород	А, Б, Г	30-60	0,1-1,0 1,0-10	±2,0 ±1,5
06.05.023	Изопропанол	А, Б	50-150	0,1-1,0 1,0-20	±3,5 ±2,0
06.05.024	Циклогексан	А, Б	50-150	0,1-1,0 1,0-20	±3,5 ±2,0
06.05.025	Уксусная кислота	А, Б	50-150	0,1-1,0 1,0-20	±5 ±2,0
06.05.026	Метиленхлорид	А, Б	30-120	0,1-1,0 1,0-20	±5 ±2,0
06.05.027	Бутилацетат	А, Б	30-120	0,1-1,0 1,0-20	±3,5 ±2,0
06.05.028	Тетрахлорметан	А, Б	50-150	0,1-1,0 1,0-20	±5 ±2,0
06.05.029	Этилбензол	А, Б	50-150	0,1-1,0 1,0-20	±5 ±2,0
06.05.030	Трихлорэтилен	А, Б	50-150	0,1-1,0 1,0-20	±5 ±2,0
06.05.031	Тетрахлорэтилен	А, Б	50-150	0,1-1,0 1,0-20	±5 ±2,0
06.05.032	Диэтиловый эфир	А, Б	30-100	0,1-1,0 1,0-25	±3,5 ±2,0
06.05.033	Изопропилбензол	А, Б	50-150	0,1-1,0 1,0-20	±5 ±2,0
06.05.034	Пентан	А, Б	30-120	0,1-1,0 1,0-20	±5
06.05.035	Метилмеркаптан	А, Б	50-100	0,1-1,0 1,0-20	±2,0 ±5 +2,0
06.05.036	Пропилмеркаптан	А, Б	50-150	0,1-1,0 1,0-20	±2,0 ±5
06.05.037	Фенол	А, Б	50-150	0,1-1,0 1,0-10	±2,0 ±5
06.05.038	Нафталин	А, Б	50-150	0,1-1,0 1,0-10	±2,0 ±5
06.05.039	Нонан	А, Б	50-150	0,1-1,0 1,0-20	±2,0 ±5
06.05.040	Декан	А, Б	50-150	0,1-1,0	±2,0 ±5
06.05.041	Ундекан	А, Б	50-150	1,0-20 0,1-1,0 1,0-20	±2,0 ±5 ±2,0

Регистрационный номер	Наименование	Исполнение	Номинальное значение температуры $(T_{\rm H})$, ${}^{\circ}{\rm C}$	Диапазон значений производительности при Т _н , мкг/мин	Границы относительной погрешности (P=0,99), %
06.05.042	Додекан	А, Б	50-150	0,1-1,0 1,0-20	±5 ±2,0
06.05.043	Тридекан	А, Б	50-150	0,1-1,0 1,0-20	±5 ±2,0
06.05.044	Пропанол	А, Б	80-110	0,5-1,0 1,0-15	±5 ±2,0
06.05.045	Изобутанол	А, Б	80-130	0,5-1,0 1,0-10	±5 ±2,0
06.05.046	Изопентан	А, Б	50-90	0,1-1,0 1,0-20	±5 ±2,0
06.05.047	Циклогексанон	А, Б	80-120	0,1-1,0 1,0-10	±5 ±2,0
06.05.048	Метилэтилсуль- фид	А, Б	50-80	0,1-1,0 1,0-10	±5 ±2,0
06.05.049	Тиофен	А, Б	50-90	0,1-1,0 1,0-10	±5 ±2,0
06.05.050	Ацетальдегид	А, Б	40-80	0,1-1,0 1,0-8	±5 ±2,0
06.05.051	Диметилформамид	А, Б	80-110	0,1-1,0 1,0-10	±5 ±2,0
06.05.052	Моноэтаноламин	А, Б	70-100	0,1-1,0 1,0-5	±5 ±2,0
06.05.053	Оксид этилена	А, Б	40-60	0,1-1,0 1,0-6	±5 ±2,0
06.05.054	Гептан	А, Б	80-120	0,5-1,0 1,0-30	±5 ±2,0
06.05.055	Сероокись углерода	Д	30-40	0,1-1,0 1,0-10	±5 ±2,0
06.05.056	Диметилсульфид	А, Б	70-90	0,3-1,0 1,0-5	±5 ±2,0
06.05.057	Диметилдисуль- фид	А, Б	70-100	0,1-1,0 1,0-6	±5 ±2,0
06.05.058	Изопропилмер- каптан	А, Б	70	0,1-1,0	±5
06.05.059	Циклогексанон	А, Б	80-120	0,2-1,0 1,0-10	±5 ±2,0
06.05.060	Этанол	А, Б	80-120	0,5-1,0 1,0-20	±5 ±2,0
06.05.061	Хлорбензол	А, Б	80 100	0,2-1 1-20	±5 ±2,0

Примечание: Заказываемые значения температуры и производительности должны находиться в диапазонах значений, установленных для ИМ с выбранным регистрационным номером.

Изготавливаются по XД 2.706.139, XД 2.706.140. Срок годности 0,5-1 год.

Служба эталонных материалов ФГУП "ВНИИМ им. Д.И. Менделеева"

06.06 Парофазные источники газовых смесей

Парофазные источники газовых смесей (ПИГС) используются при градуировке и поверке газоанализаторов и хроматографов, применяемых для контроля загрязнения воздушной среды.

ПИГС представляет собой металлический сосуд вместимостью 1 дм³, заполненный угольным сорбентом с целевым веществом (исполнение "У") или раствором целевого вещества в масле (исполнение "М"), в этиленгликоле (исполнение "Э").

При продувке через ПИГС азота (гелия, воздуха) целевое вещество экстрагируется (десорбируется) из наполнителя. Параметры ПИГС подобраны таким образом, что значение массовой концентрации целевого вещества на выходе ПИГС остается практически постоянным до превышения ресурса по объему пропущенного газа.

Диапазон устанавливаемого расхода газа для ПИГС исполнения "У" составляет от 10 до $150~{\rm cm^3/muh}$, для исполнений "Э" и "М" – от $10~{\rm дo}~300~{\rm cm^3/muh}$.

	1			
Регистрационный	Наименование	Условное	Интервал значений массовой	Ресурс по объему
номер	вещества	обозначение	концентрации вещества в смеси	пропущенного газа
помер	вещества	ПИГС	на выходе ПИГС, мг/м 3	(V ^{max}), дм ³
06.06.001	Фенол	ПИГС-Э-01	1,0-100	10000
06.06.002	Стирол	ПИГС-М-02	1,0-1000	220
06.06.003	о-ксилол	ПИГС-М-03	1,0-1000	200
06.06.004	м-ксилол	ПИГС-М-04	1,0-1000	200
06.06.005	п-ксилол	ПИГС-М-05	1,0-1000	200
06.06.006	о-ксилол	ПИГС-У-03	0,5-1000	1000
06.06.007	м-ксилол	ПИГС-У-04	0,5-1000	1000
06.06.008	п-ксилол	ПИГС-У-05	0,5-1000	1000
06.06.009	Бензол	ПИГС-У-06	0,5-1000	1000
06.06.010	Бутанол	ПИГС-У-07	0,5-1000	1000
06.06.011	Гексан	ПИГС-У-08	0,5-1000	1000
06.06.012	Дихлорэтан	ПИГС-У-09	0,5-1000	1000
06.06.013	Толуол	ПИГС-У-10	0,5-1000	1000
06.06.014	Ацетон	ПИГС-У-11	0,5-1000	1000
06.06.015	Метанол	ПИГС-У-12	0,5-1000	1000
06.06.016	Изо-пентан	ПИГС-У-13	0,5-1000	1000
06.06.017	Изо-бутанол	ПИГС-У-14	0,5-1000	1000
06.06.018	α-метилстирол	ПИГС-М-06	1,0-1000	200
06.06.019	Толуол	ПИГС-М-07	1,0-1000	70
06.06.020	Пропанол	ПИГС-У-15	0,5-1000	1000
06.06.021	Этилбензол	ПИГС-М-08	1,0-1000	200
06.06.022	Этилбензол	ПИГС-У-16	0,5-1000	1000
06.06.023	Циклогексан	ПИГС-У-17	0,5-1000	1000

Изготавливаются по ТУ 4215-001-20810646-99. Код по ОКП 42 1519 2.

Пределы допускаемой относительной погрешности (δ) значения массовой концентрации целевого вещества в смеси на выходе ПИГС: (см. на обороте)

Служба эталонных материалов ФГУП "ВНИИМ им. Д.И. Менделеева"

Режим использования ПИГС	Массовая концентрация целевого вещества	
	$(0,5-5) \text{ M}\Gamma/\text{M}^3$	$(5-1000) \text{ мг/м}^3$
В условиях термостатирования (20 ± 0.1) °C или (25 ± 0.1) °C	$\delta = \pm 10 \%$	$\delta = \pm 7 \%$
Без термостатирования	$\delta = \pm 20 \%$	$\delta = \pm 20 \%$

ПИГС зарегистрированы в Государственном реестре средств измерений под номером 18358-06. Выполняют функции рабочего эталона второго разряда в соответствии с Государственной поверочной схемой для средств измерений содержания компонентов в газовых средах (ГОСТ 8.578-2002).

ПИГС упаковывается в пакет из полиэтиленовой пленки.

В комплект поставки входят: ПИГС с двумя заглушками и паспорт.

Срок годности 1 год.

06.07 Эталонные образцы чистых газов

Применяются при сличениях эталонов, для градуировки и поверки высокоточных газоанализаторов, а также в качестве исходных компонентов при приготовлении газовых смесей гравиметрическим методом.

Эталоны представляют собой образцы выпускаемых промышленностью газов высокой чистоты, аттестованные по содержанию основного компонента и примесей (He, Ne, H_2 , Ar, O_2 , N_2 , Kr, CO, CO_2 , Xe, NO_x , углеводородов C_1 – C_4 , паров воды) на комплексе аналитической аппаратуры Государственного первичного эталона единицы молярной доли компонентов в газовых средах (ГЭТ 154-01).

Регистрационный	Наименование	Молярная доля	Границы абсолютной погреш-
номер	Паименование	основного компонента, %	ности (Р=0,99)
06.07.001	Азот	99,995-99,999	$\pm (3\cdot 10^{-4} - 1\cdot 10^{-4})$
06.07.002	Кислород	99,995-99,999	$\pm (3\cdot10^{-4}-1\cdot10^{-4})$
06.07.003	Гелий	99,995-99,9995	$\pm (3.10^{-4}-5.10^{-5})$
06.07.004	Водород	99,99-99,999	$\pm (1.10^{-3}-1.10^{-4})$
06.07.005	Метан	99,95-99,99	$\pm (2 \cdot 10^{-3} - 1 \cdot 10^{-3})$
06.07.006	Диоксид углерода	99,99-99,999	$\pm (5.10^{-3}-1.10^{-3})$
06.07.007	Аргон	99,993-99,999	$\pm (1.10^{-3}-1.10^{-4})$

Диапазоны измерений молярной доли примесей, млн-1

0,1-40

Границы относительной погрешности результата

измерения молярной доли примеси (при Р=0,99), %

25-8

В соответствии с Государственной поверочной схемой для средств измерений содержания компонентов в газовых средах (ГОСТ 8.578-2002) образцы выполняют функции эталонов сравнения.

Поставляются в баллонах вместимостью от 5 до 40 дм^3 .

Изготавливаются по Хд 2.706.142, Хд 1.456.438 МИ.

Стабильность состава образцов гарантируется в течение 1 года.

Служба эталонных материалов ФГУП "ВНИИМ им. Д.И. Менделеева"

190005, Санкт-Петербург, Московский пр., 19

тел: (812) 315-11-45 E-mail:info@vniim.ru факс: (812) 327-97-76 http://www.vniim.ru

06.08 Стандартные образцы состава – смеси сжиженных углеводородов (ССУ)

Предназначены для градуировки и поверки рабочих средств измерений, контроля погрешностей методик выполнения измерений.

Регистрационный номер	Определяемый компонент	Интервал допускаемых значений массовой доли определяемого компонента в жидкой фазе, %	Пределы допускаемого относительного отклонения ±Д, %	Границы абсолютной погрешности (P=0,95) $\pm \Delta^{**}$, %
-	Бутан (C ₄ H ₁₀)	75-99,9	-	$\Delta = -0.0125 \cdot X + 1.35$
	Пропан (C ₃ H ₈)*	0,005-5,0	20	$\Delta = 0.15 \cdot X$
	Пропилен (C ₃ H ₆)*	0,005-10	20	$\Delta = 0.15 \cdot X$
	Транс бутен $(C_4H_8)^*$	0,005-2,0	20	$\Delta = 0.15 \cdot X$
	1 бутен (C ₄ H ₈) *	0,005-2,0	20	$\Delta = 0.15 \cdot X$
	Цис бутен (C ₄ H ₈)*	0,005-2,0	20	$\Delta = 0.15 \cdot X$
	Метан (CH ₄) *	0,005-5,0	20	$\Delta = 0.15 \cdot X$
	Этан (С ₂ Н ₆)*	0,005-5,0	20	$\Delta = 0.15 \cdot X$
	Этилен (C ₂ H ₄) *	0,005-2.0	20	$\Delta = 0.15 \cdot X$
	Изобутан (i-C ₄ H ₁₀)*	0,005-5,0	20	$\Delta = 0.15 \cdot X$
	Изобутилен (i-C ₄ H ₈) *	0,005-2,0	20	$\Delta = 0.15 \cdot X$
V	Изопентан (i-C ₅ H ₁₂)*	0,005-2,0	20	$\Delta = 0.15 \cdot X$
	Пентан (C ₅ H ₁₂)*	0,005-2,0	20	$\Delta = 0.15 \cdot X$
	Пентен-1 $(C_5H_{10})^*$	0,005-2,0	20	$\Delta = 0.15 \cdot X$
	Пентен-2 $(C_5H_{10})^*$	0,005-2,0	20	$\Delta = 0.15 \cdot X$
	Гексан (C ₆ H ₁₄)*	0,005-1,0	20	$\Delta = 0.15 \cdot X$
	1,3 - бутадиен (С ₄ Н ₆)*	0,005-2,0	20	$\Delta = 0.15 \cdot X$
	Кислород (O ₂)*	0,00050-0,010	30	$\Delta = 0.2 \cdot X + 0.00003$
	Азот (N ₂) *	0,00050-0,050	30	$\Delta = 0.2 \cdot X + 0.00006$
06.08.002	Пропан (С ₃ Н ₈)	75-99,9	-	$\Delta = -0.02 \cdot X + 2.1$
	Бутан $(C_4H_{10})^*$	0,005-5,0	20	$\Delta = 0.15 \cdot X$
	Пропилен $(C_3H_6)^*$	0,005-10	20	$\Delta = 0.15 \cdot X$
-	Транс бутен (C ₄ H ₈)*	0,005-2,0	20	$\Delta = 0.15 \cdot X$
	1 бутен (C ₄ H ₈) *	0,005-2,0	20	$\Delta = 0.15 \cdot X$
I	Цис бутен (C ₄ H ₈) *	0,005-2,0	20	$\Delta = 0.15 \cdot X$
	Метан (CH ₄) *	0,005-5,0	20	$\Delta = 0.15 \cdot X$
Эти Изс Изс Изс Пег Пег Гек 1,3 Кис	Этан (C ₂ H ₆)*	0,005-5,0	20	$\Delta = 0.15 \cdot X$
	Этилен $(C_2H_4)^*$	0,005-2.0	20	$\Delta = 0.15 \cdot X$
	Изобутан (i-C ₄ H ₁₀) *	0,005-5,0	20	$\Delta = 0.15 \cdot X$
	Изобутилен (i- C_4H_8) *	0,005-2,0	20	$\Delta = 0.15 \cdot X$
	Изопентан (i-C ₅ H ₁₂)*	0,005-2,0	20	$\Delta = 0.15 \cdot X$
	Пентан $(C_5H_{12})^*$	0,005-2,0	20	$\Delta = 0.15 \cdot X$
	Пентен-1 $(C_5H_{10})^*$	0,005-2,0	20	$\Delta = 0.15 \cdot X$
	Пентен-2 $(C_5H_{10})^*$	0,005-2,0	20	$\Delta = 0.15 \cdot X$
	Гексан (C ₆ H ₁₄)*	0,005-1,0	20	$\Delta = 0.15 \cdot X$
	1,3 –бутадиен (C ₄ H ₆) *	0,005-2,0	20	$\Delta = 0.15 \cdot X$
	Кислород (O ₂)*	0,00050-0,010	30	$\Delta = 0.2 \cdot X + 0.00005$
	Азот (N ₂)*	0,00050-0,050	30	$\Delta = 0.2 \cdot X + 0.00006$

^{*} Компоненты включаются в смесь по требованию заказчика или присутствуют в исходных газах как примеси.

Служба эталонных материалов ФГУП "ВНИИМ им. Д.И. Менделеева"

^{**} X – значение массовой доли компонента указываемое в паспорте.

Стандартные образцы представляют собой двухфазную систему, состоящую из жидкой и газовой фазы, находящуюся в равновесии в баллоне специальной конструкции — пробоотборнике (БМК-300В-2-2-1-2), вместимостью (1-2) дм³, снабженным двумя мембранными вентилями типа ВВ-55, ВВ-55М, ВЛ-16, заглушкой и манометром типа ДМ 90-063-1-М (кл. 1,5). Давление смеси в баллоне (0,2-5,0) МПа.

Поставляются с паспортом и инструкцией по применению. Срок годности 1 год.

